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1 Introduction 

1.1 Motivation 

Transportation is essential. It allows us to meet, exchange ideas and trade; all activities that are integral 

parts to our evolutionary-cognitive advantage.1 Transportation is however not effortless. From this 

perspective, the obstacles associated with distance, such as the time it takes to travel between 

locations are a limit to our capabilities. Clearly, this limit changes over time and many of us travel faster 

and cheaper than ever before.2 But even today, travel is associated with substantial costs to ourselves 

and to others. This dissertation measures some of the costs that are associated with land-based 

transportation and we suggest policies to reduce these. 

 Modern, land-based transportation requires substantial individual and collective investments. 

Collectively, we finance the construction and maintenance of transport infrastructure as well as public 

forms of transportation (e.g. rail and bus).3 On an individual level, we require a mode of transport (e.g. 

car, bus or bicycle) and an energy source (e.g. gasoline) as inputs. Arguably the most valuable resource 

necessary for individuals to travel is finite, scarce and cannot be produced – it is time. All forms of 

personal transportation require travel time of its users. Under perfect transport conditions, travel time 

is reduced to an optimum.4 However, travel conditions are usually not perfect and travel time is not at 

its optimum because of, for example, peak-hour traffic or road accidents.  

  Road congestion is an immense, global problem. The European Commission (2011) speculates 

that about 1% of GDP (€130 billion) is lost in travel time and fuel due to congestion each year in the EU-

28 alone. It is especially urban areas that have problems with congestion.5  For example, in London, 

                                                           
1 Transport of goods and services allows for the specialization in human activity and increased labor productivity. Transport is 
essential to progress. The limits of transport define the size of the market and in general, the development-level of society. 
(e.g. Plato, 430BC; Hume, 1738; Mumford, 1961).   
2 The price of transport has decreased by more than 90% in the last 50 years for goods (Glaeser and Kohlhase, 2004; Hummels, 
2007) and more than 50% for passengers (The Economist, 2000; Lawyer, 2007).  
3 The collective investments towards the public road infrastructure networks provide the basis for regional economic 
developments from travel and trade (Baum-Snow et al., 2015; Adler et al., 2018a). 
4 Apart from travel time, other characteristics such as safety and monetary cost also play a role in the optimal travel decision. 
Despite improvements in travel time over the years, the average amount of time spend on commuting is relatively constant- 
known as Marchetti’s (1994) constant. Improvements in travel efficiency are used to travel more frequently and further, a 
case of Jevons paradox where resource savings through efficiency gains are used for an increase in consumption. 
5 Human agglomeration in urban areas increases congestion due to travel demand. Already ancient cities experienced road 
congestion, for the case of Rome around the time of Julius Cesar, see, Cary (1929) and Van Tilburg (2007). Progressing 
urbanization throughout the last millennia have meant a steady increase in externalities such as road congestion (Falcocchio 
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one-fifth of commuters spend more than two hours a day for travel from and to work (Transport for 

London, 2014). Outside of Europe, residents of Los Angeles lose on average €5,700 to traffic jams each 

year (The Economist, 2014). While these costs are already staggering, in addition to the fuel and time 

costs there are unaccounted cost to public health and the environment that further increase the 

burden.6 Following current trends, congestion is going to increase under pressure of continued 

urbanization and car ownership in the developed world, but even more so, in the developing world 

(Schafer & Victor, 2000; TomTom Traffic Index, 2017). The advent of autonomous vehicles in the near 

future is predicted to lend even more urgency to this issue as the interaction between regular cars and 

autonomous vehicles as well as an increase in mobility might substantially increase congestion whereas 

sensible policy choices have the potential to dramatically reduce it (Ranft et al., 2016; Calvert et al., 

2017).  

 We aim to contribute to the on-going discussion on how to measure road congestion and 

examine the cost and benefits of the main policy remedies, such as road pricing and public transit 

provision. Road congestion and transportation in general are important subjects and henceforth 

receive attention by academic disciplines from engineering to healthcare and psychology.7 While we 

rely on this knowledge, our analysis is rooted in economics. 

 

1.2 Transport in economics 

The importance of transportation in economics is increasing. In the past, economists abstracted from 

the implications of distance, space and the complexities of transport for the reasons of simplicity. Then, 

notably, in 1826, Von Thünen introduced transportation into his explanation of the distribution of 

human activities over space. His assessment that transport costs are essential to this distribution 

motivated urban economics, economic geography and transport economics.8 

Transport is still highly relevant to the distribution of human activity from housing to 

production.  For example, when we would like to analyze the determinants of household locations, the 

                                                           
and Levinson, 2015). Actually, congestion is one of the main counterbalances to agglomeration forces driving urbanization 
(Brakman et al., 2009). 
6 The additional costs to offset one-year carbon-dioxide emission from congestion alone would be €45 million for Los Angeles 
(The Economist, 2014). The health cost still debated but might exceed the other costs.  
7 See, for examples of transportation in the engineering literature (Chakroborty & Das, 2017), healthcare (Fournier, 2017), 
mathematics (Carrillo et al., 2012), sociology (Kaufmann, 2017), and politics (Dunn, 2015). 
8 Von Thünen argues that economic activity centers around a core, usually a city center, which is supplied by resources from 
the surrounding areas – the ‘hinterland’. Spatial economics and regional economic also greatly benefited from his contribution 
for similar reasons. 
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distance and implicit travel time to work and family matters (Alonso, 1964; Eliasson and Mattsson, 

2000; Gubins and Verhoef, 2014; Mulalic et al., 2014).9  

As a starting point to an economic investigation into transport, one might want to assume that 

a rational individual – epitomized by the homo economicus – optimizes his travel according to his 

preferred travel time, transport mode, level of comfort, departure and arrival time.10 Sets of 

preferences containing these travel specifics can be bundled up to one utility benchmark so that 

alternatives can be compared. For example, a trip can be done either by car or train, each with their 

own advantages in comfort, speed and costs. For the comparison of alternatives, it is the most 

convenient to ‘monetize’ all preference aspects. For example, extra travel time can be expressed as an 

Euro-equivalent (Becker, 1965; Small et al., 2005; Koopmanns et al. 2013; Peer et al., 2014). 

 

Table 1.1 ─ Thesis chapter content  

 Chap. 2 Chap. 3 Chap. 4 Chap. 5 

Road congestion + + + + 
Road cost curve + +   
Marginal external cost + + + + 
Road pricing + +   
Second-best policies +  + + 
Welfare analysis + + + + 

 

The place where individuals with a demand for travel encounter the supply in transport 

possibilities is the transport market. The (short-term) supply of road transport is directly measured and 

discussed in Chapter 2 and 3 and indirectly in the rest of the Chapters. In a perfect ‘theoretical world’, 

market mechanisms lead to the most efficient outcome. However, in the real world, market frictions 

and the unregulated use of common resources can result in suboptimal outcomes.11 A situation where 

an individual’s action creates costs that are borne by others are a negative externality, given that there 

are no other market transactions (e.g. compensation payments). Traffic externalities are far reaching 

and also encompass road accidents, air- and noise pollution (De Borger and Proost, 2013). This thesis 

                                                           
9 The proximity to amenities such as green space and landmark buildings also plays a role (Brueckner et al., 1999; Koster et 
al., 2016). 
10 The concept of the homo economicus where individuals take decisions to maximize their utility is crucial for the evaluation 
of policy alternatives. For an early discussion of the concept see Smith (1776), Rau (1826), and Mill (1874). 
11 The abuse of a common good due to missing regulation is a reoccurring theme in many areas from pollution to land 
ownership, healthcare and also transport. Such a tragedy of the commons can often, but not always, be solved with allocating 
ownership of the public resource to an authority (Hardin, 1968).  
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focuses foremost on the economics of road congestion ─ one of the main problems concerning road 

transport - important in all chapters of this thesis, visible in Table 1.12  

 

1.3 Road congestion 

An individual’s decision to use a car increases travel time of all road users in proximity and this is 

unaccounted for by that individual. This ‘time loss’ can have various causes. For example, traffic jams 

from cars waiting to pass a bottleneck obstruction that reduces road capacity (Vickrey, 1969) are a form 

of nodal congestion. Even without bottlenecks, an increase in traffic density, e.g. on a highway, can 

result in link congestion. Vehicles waiting to pass through a link or queuing at a bottleneck (e.g. 

intersection) are referred to as stock congestion while cars passing through a section are a form of flow 

congestion. In reality, a mix of these types of congestion is plausible. In Chapters 2 and 3 we make use 

of static (i.e. stationary-state) models in our theoretical section as opposed to dynamic congestion. 

These models differ in the assumptions they make as well as to what specific real-world applications 

they can be prescribed to. The coexistence of competing explanations to congestion has resulted in 

continued empirical interest (see Helbing, 2001).  

Empirical studies on road congestion have a long history and it is possible to distinguish these 

by the source of the underlying data, the study location and the applied research methodology (Small 

and Verhoef, 2007, p.69ff). Traffic data can be sourced from fixed measurement infrastructure at the 

road-side: such as pneumatic tubes, induction loops embedded in the road surface and license plate 

recognition cameras. Alternative data sources are from in-vehicle ‘floating-car’ data such as specific 

test-vehicles in traffic and from mobile devices such as phones or navigation systems as well as trip 

information from travel surveys. Roads are vastly different in characteristics and so the source of the 

data often defines the scope of the work. Due to their importance and discernible traffic patterns, most 

applied research focuses on highways. In comparison to inner city roads, highways have a higher speed 

limit, sometimes more lanes and on- and off-ramps instead of intersections. However, the delineation 

is sometimes not easy, as in the case of arterial roads and highways that lead through densely 

populated areas. Research interest for inner city roads is steadily increasing. Except for Chapter 5, we 

                                                           
12 Externalities also apply to other congestible facilities, such as for university computers (Kobus et al., 2011) and airports 
(Czerny & Zhang, 2014). Externalities can also be positive, when a benefit occurs to others as an unintended consequence of 
an action.  
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focus on both inner city roads and highways, relying on pneumatic tube and induction loop data as data 

sources. We use highway loop data in Chapter 5. 

Corresponding to these various data sources, a wide-array of methodologies exists. There is an 

ongoing debate whether to consider travel time a function of vehicle flow, the ratio of vehicle flow to 

road capacity or of vehicle density. In chapters two to four, we add to this debate by proposing novel 

empirical strategies for the measurement of road congestion. Policies to reduce congestion are as 

varied as the data sources and research methodologies. 

 

1.4 Policy remedies  

Remedies to road congestion are difficult to find and hard to implement. The first thing that comes to 

mind is to increase road capacity by building new roads so that more cars can travel. However, most 

urban centers already have densely built infrastructure. Reducing building density to accommodate 

new roads would decrease the benefits of density (Jacobs, 1961; Ciccone and Hall, 1996; Glaeser, 

1998).13 Even then, new road capacity would only produce medium-term congestion relief as in the 

long-term induced demand for travel would increase road congestion to similar levels, a circumstance 

known as the law of highway congestion (Downs, 1992; Duranton and Turner, 2011). 

  Perhaps, the “best” (i.e. cost effective) and certainly most direct strategy is marginal cost 

pricing. This concept is also sometimes referred to as first-best pricing, where each traveler is 

confronted with their own marginal social cost of travel (Walters, 1968; Hotelling, 1983). For roads, the 

same principle applies, and there are several applications to highways (Pigou, 1920; Knight 1924; 

Vickrey, 1963; Dewees, 1979; Fosgerau and Small, 2012) and to urban areas (Keeler and Small, 1977; 

May and Milne, 2001; De Palma et al., 2006).14 For dynamic models see Vickrey (1969), Chu (1995); 

Arnott et al. (1993), Verhoef (2003), Van den Berg and Verhoef (2011). Most often practical constraints, 

other market distortions and the political process prevent first-best optimization and instead second-

best pricing is applied in practice, see Small and Verhoef (2007) for a review.15 

 There are several road tolls that were designed to reduce road congestion over the last 

decades. Tolls vary substantially from a few cents per kilometer in Singapore to more than €10 for 

                                                           
13 A reduction in agglomeration would reduce the agglomeration benefits of the location. 
14 Apart from the empirical work by Keeler and Small, articles on the road pricing for cities are based on simulations due to 
the complexities inherent in road networks. 
15 Constraints to first best pricing are for example the lack of information, the inability to vary tolls over time and over space 
and the political process (Milne et al., 2000). 
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access to the inner city of London. With electronic road pricing, the price depends on the distance 

driven, whereas for the cordon toll entry is charged for an entire area. Using traffic models for 

Cambridge, Milne et al. (1994) find that congestion zoning is inferior to congestion specific charges, 

nonetheless, congestion zones are technically easier and continue to be frequent. 

For most cities, tolls vary between peak and off-peak hours. In line with higher traffic demand, 

peaks have usually higher tolls and off-peaks are often not tolled at all. Road tolls reduce travel demand 

and redistribute peak travel demand to off-peak travel, see Arnott et al. (1988). Afternoon peak pricing 

reduces especially discretionary trips in the afternoon (Eliasson et al., 2009). In Hong Kong, pricing the 

peak direction would be at least as important as choosing the ‘optimal’ cordon zone area (Harrison, 

1986). For the Randstad area in the Netherlands, a cordon toll on the highway network was projected 

to result in a time gain of 0.1 min/km (Small and Gomez-Ilbanez, 1998). We address highway travel 

time gains in the Netherlands in Chapter 3, 4 and 5, and optimal congestion tolls for highways and 

inner-city roads in chapter 2 and 3.  

Road tolls differ substantially due to the differences in consumer prices, the value of time, 

travel demand at the location but also the aim of and methodology it is based on. For example, in 

Singapore road pricing is based on the evaluation of various pricing regimes since 1975 where price 

effects on travel time are posteriorly evaluated and adjusted. For Hong Kong, road pricing is based on 

a simulation by Harrison (1986), similarly to the proposed road tolls for Cambridge, based on economic 

evaluation of marginal user costs. Often the intended impact of road pricing is expressed as an intended 

flow reduction instead of a travel time improvement. For example, Small and Gomez-Ilbanez (1998) 

conclude that cordon road tolls of €2.65 to €3.95 for peak traffic reduce flow by approximately 20%. 

This makes travel time gains (actual and intended) hard to compare as also gains from off-peak pricing 

are either not recorded or sometimes reported combined with peak-benefits as total travel time 

benefits. 

Some tolls do not result in long-term travel time gains on the road as in the case of London 

where changes in the traffic composition have led to resurgence in congestion (Financial Times, 2016). 

This is connected to the setup of the toll and suggests that a future increase of travel demand through, 

for example, autonomous vehicles without tolls might result in even more congestion (Ranft et al., 

2016; Citymetric, 2017). 

The basis and implementation of road tolls continue to be actively debated. Inner city cordon 

tolls usually are borne to a considerable extent by car-owning suburban households. The effectiveness 
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of cordon tolls depends on the size of the toll area. Smaller cordon areas have a larger traffic 

distribution effect and so the range for the optimal price level is smaller than for larger areas (Fowkes 

et al., 1993). Also, the use of the toll revenue is a contested issue. After the deduction of the operational 

cost, up to 90% of revenue is still available. It is apparently this use of revenue that plays a key role for 

social acceptability and hence for the successful implementation of road pricing (Verhoef et al., 1998; 

Lindsey, 2006). Political, economic and practical considerations have made road tolling for reasons of 

congestion uncommon and contested. By comparison, second-best pricing alternatives are 

omnipresent. 

Under the umbrella of second-best pricing alternatives, there is the possibility to charge for 

parking or to reduce the cost of transport alternatives, for example, public transit and bicycle use. It is 

even possible to put a price on car use (e.g. through road tolls) and then use the revenues to finance 

second-best congestion policies. Studies that evaluate second-best policies are complex because of 

indirect and secondary market effects, e.g. on the housing market and focus in scope on a set of second-

best alternatives (Verhoef et al., 1995; Parry and Bento, 2002; Tikoudis, 2015). These studies rely on 

the measurement of congestion costs and knowledge of the benefits from second-best policies.  

Transit helps alleviate congestion and reduce other traffic externalities when it is a susbstitue 

for car travel (Litman, 2017). We measure the congestion relief benefit from public transit in chapters 

3 and 4. Additional economic arguments for public transit provision are that since an increase in the 

use of public transit leads to a higher public transit frequency and shorter waiting times, public transit 

exhibits increasing returns to scale (Mohring, 1972). Efficient and affordable public transit provision is 

supposed to provide fairer access to mobility and jobs (O'Regan and Quigley, 1991; Glaeser et al., 2008). 

Lastly, cities with public transit are usually denser and therefore have a larger agglomeration benefit 

(Graham, 2007).  

 Public transit management and finance varies substantially across the globe. North American 

public transit is heavily subsidized and only accounts for a smaller number of trips outside the urban 

centers. In Asia and Europe, public transit can account for a large share of urban trips. The optimal level 

of subsidies to public transit are widely debated (e.g. Nelson et al., 2007; Parry and Small, 2009; 

Anderson, 2014; Basso and Silva, 2014). The effects from changes in subsidies and transit supply might 

vary over time (Duranton and Turner, 2011; Litman, 2015). In the short-run, an increase of transit 

supply or lower ticket prices might motivate substitution between transport modes. In the long-run, 

decisions about individual car ownership, household and firm location choices are relevant. We 
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contribute to the debate about the benefits of public transit and economic justification of subsidies in 

chapters 2 and 4.16  

Road accidents are another major source of economic and personal losses. Accidents kill 1.25 

million people annually and reduce gross domestic product by 1.3% and even 2.5% when taking 

reductions to the the quality of life from injuries into account (Elvik, 2000; WHO, 2017). A large body 

of scientific literature addresses the causes and the prevention of accidents. For some recent examples, 

see Hauer (2010), Smolensky et al. (2011), and Otte et al. (2012). One of the factors increasing accident 

severity is the weight ratio of the vehicles involved (Van Ommeren et al., 2013). Insurances help 

internalize risk factors such as vehicle weight (Dementieva and Verhoef, 2016). The risk of vunerable, 

non-motorized travelers is fundamentally impacted by the weight of vehicles, speed and level of car 

ownership in society (Adler and Ahrend, 2017). Accidents also affect non-involved parties. We consider 

the external cost of traffic accidents and incidents in terms of road congestion in chapter 5. Hereby, we 

also contemplate the benefits of accident and incident management toward congestion reduction in a 

welfare framework.17 

 

                                                           
16 There are other solutions that also have a long track-record. Another viable alternative is to reduce inner city parking space 
similar to increasing parking prices (Van Ommeren et al., 2011). Improvements in internalizing driving externalities by indirect 
means, such as fuel taxation can result in consumers changing behavior in unintended ways, such as switching to smaller cars 
and driving marginally less with consumer behavior rebounding in other energy intensive consumer products (De Borger et 
al., 2016). There are several transport alternatives that are only briefly mentioned such as bicycle use, see, e.g. Rietveld and 
Daniel (2004); Van Wee and Börjesson (2015). Our research addresses short distance travel in an urban setting, for longer 
distance travel and intermodality see, for example, Behrens and Pels (2012). Innovative use of underutilized infrastructure 
can be an alternative (Marrades and Segovia, 2013).  
17 We largely ignore other traffic externalities such as pollution which are highly important for pricing (e.g. Koelbl et al., 2014; 
Dimitropoulos et al., 2016; Sonnenschein und Mundaca, 2016). 



 

1 
 

2 Road congestion and public transit 

2.1 Introduction18 

Road congestion is a major issue in cities throughout the world. To deal with this problem, policymakers 

have several options, including road tolls, quantity-based restrictions (e.g. road-plate rationing), 

subsidized public transit supply and transport infrastructure expansion. None of these options comes 

at a low cost. Tolls, fuel taxes, and quantity restrictions are politically controversial (Parry and Small, 

2005; Small and Verhoef, 2007), while transit supply and infrastructure expansions are expensive (Parry 

and Small, 2009; Duranton and Turner, 2011). It is therefore important to know how large the welfare 

losses that we can avoid by adopting these policies are. Yet, quite surprisingly, we still know very little 

about the costs of congestion in cities.  

The main objective of this paper is to measure the welfare losses of road congestion in large 

cities. We estimate these losses based on traffic observations from a wide set of roads in Rome, the 

Italian capital. We quantify the marginal external costs and the deadweight losses of congestion on 

motor vehicle travelers. We also estimate the costs of congestion on bus travelers, who constitute a 

substantial share of the travel market in Rome. Finally, we evaluate the effectiveness of public transit 

supply as a tool to alleviate road congestion. 

 Evaluating the welfare losses of congestion is conceptually simple but estimating them is far 

from trivial. Estimation requires knowledge of the relation between travel (time) costs and traffic flow 

(the ‘road supply curve’). However, the supply relation on heavily-congested roads is backward 

bending, a phenomenon which is labelled as hypercongestion (Arnott and Inci, 2010; Arnott, 2013). 

Hence, this relation cannot be estimated using standard econometric techniques. Keeler and Small 

(1977) address this issue by estimating travel time as a function of flow and then inverting the 

estimated function. We improve upon their methodology by following a transportation science 

                                                           
18 This chapter is based on Adler, M. W.; Liberini, F.; Russo, A.; van Ommeren, J. N. (2017). Road congestion and public transit. 

ITEA Conference Working Paper. We thank Rome’s Mobility Agency (Agenzia per la Mobilita) and the Italian regulator for 
public sector strikes (Commissione di Garanzia per gli Scioperi) for kindly providing data. We also thank Alex Anas, Richard 
Arnott, Gilles Duranton, Dan Jaqua, Ken Small and Erik Verhoef for insightful comments. We are grateful to audiences at UC 
Irvine, University of Toronto, Newcastle University, London School of Economics, VU Amsterdam, Brno University of 
Technology, Vienna University of Economics and Business, Institut d'Economia de Barcelona, the Urban Economics Association 
meeting in Minneapolis, the IIPF conference in Lake Tahoe, the International Trade and Urban Economics workshop in St 
Petersburg, the Verkehrsökonomik und –politik Conference in Berlin and the meeting of the Italian Society for Transport 
Economics for useful comments and suggestions. All errors are our responsibility. We acknowledge financial contribution by 
the European Research Council-OPTION program.  
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literature which estimates the effect of vehicle density on travel time and then derive the travel time-

flow relation by applying fundamental identities (for an overview, see Hall, 1996).19 The latter literature 

estimates the causal effect of density on travel time without accounting for fundamental endogeneity 

issues from measurement error and omitted variables. Common unobservable shocks, e.g. road 

accidents, may affect density and travel time, producing an omitted variable bias. More fundamentally, 

density is the product of flow and travel time. Hence, any measurement error in travel time induces a 

positive correlation with density.20 The first contribution of this paper is to deal with the issue of 

hypercongestion, while proposing an instrumental variable approach to account for the endogeneity 

in the relation between travel time and density. We exploit changes in public transit supply in Rome, 

due to labor strikes, as an instrument for density. 

A second important contribution of our paper is that we employ our road supply estimates to 

quantify the marginal external cost of congestion and the resulting deadweight losses, while explicitly 

allowing for hypercongestion. We emphasize here that hypercongestion is present in only about 2 

percent of the observations. Our welfare calculations apply to other 98% of congested traffic. These 

results suggest that policy interventions to curb congestion, such as road pricing, can bring to significant 

welfare gains. However, even if pricing is unavailable (possibly due to political constraints), it may be 

possible to achieve some gains by reducing hypercongestion, for example by adopting traffic 

management measures such as adaptive traffic lights (Kouvelas et al., 2017). 

We argue that a complete analysis of the costs associated with road congestion requires 

considering how all road users are affected. Congestion imposes travel time losses not only on motor 

vehicle travelers but also on bus travelers. Accordingly, we estimate the costs of congestion on bus 

users. In cities such as Rome, where buses are the mainstay of the transit system and rarely travel on 

dedicated corridors, these costs are potentially large. We show that the marginal external cost on bus 

travelers is substantial and that about one third of the welfare losses due to motor vehicle congestion 

are borne by bus travelers. These results are important not only because existing literature typically 

ignores the effect of motor vehicle congestion on bus travelers, but also because they deliver clear 

                                                           
19 In a dynamic model of congestion, Henderson (1974) also models travel time as a function of density, measured as the 
quantity of commuters on a road at a given time. See also Henderson (1981). 
20 We ran some simulations – available upon request – indicating that measurement error in travel time is a fundamental 
issue: when the standard deviation of measurement error in travel time is only 10 percent of the standard deviation of travel 
time, then the upward bias in the estimate of the density parameter 𝛼 in equation (2.3) is about 30 percent. Note also that, 
in presence of measurement error in flow, one would expect a standard attenuation bias (Wooldridge, 2002, p.75). However, 
our simulations indicate that measurement error in flow produces an almost negligible downward bias. 
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policy implications. Specifically, our results provide an empirical foundation for traffic management 

interventions such as the design of separate bus lanes (see, e.g., Basso and Silva, 2014). 

Having established that congestion produces non-negligible welfare losses, we turn our 

attention to one of the most commonly advocated remedies: the provision of (subsidized) public 

transport. In Rome, as in many other cities, public transport subsidies are large, especially given the 

relatively limited modal share of transit.21 Yet, little is known about the congestion-relief benefit of 

public transit – i.e., the reduction in motor vehicle and bus travel times due to the provision of public 

transit services. We follow a recent literature that uses a quasi-experimental approach exploiting 

shocks in transit supply due to labor strikes, but we exploit one fundamental data novelty: we observe 

strikes that vary at the intensive margin, i.e. the reduction in public transit service per strike. To be 

more precise, we have information about hourly reductions in public transit supply during strikes – 

measured in vehicle kilometers – which allows us to estimate the marginal congestion relief benefit of 

public transit. This is relevant because policy decisions typically focus on marginal transit supply 

changes, whereas complete shutdowns are an uncommon policy option. Moreover, when we estimate 

the congestion relief benefit, we also include bus travelers, which previous literature ignored. 

We show that the marginal congestion benefit of public transit supply is sizeable and 

approximately constant over the full range of public transit supply levels. Nevertheless, it appears that 

the total congestion relief benefit is moderate. We find evidence that the efficiency of transit can be 

further increased through a range of policies that reduce congestion such as bus lanes and fare 

reductions. 

Our work relates to different strands of literature. Regarding the welfare losses of congestion, 

numerous papers measure the relationship between travel time (or speed) and traffic flow at the level 

of single roads (see Small and Verhoef, 2007, for an overview), but none addresses the fundamental 

endogeneity issue discussed earlier. Furthermore, most papers rely on limited samples of roads to 

quantify the marginal external congestion costs and the welfare losses in a city. Geroliminis and 

Daganzo (2008) use similar road level data to estimate a speed-density curve for the city of Yokohama.22 

                                                           
21 In most OECD countries, subsidies to public transit range from 30% to 90% of operating costs (USDOT, 2011, Kenworthy and 
Laube, 2001). In addition, capital costs are also frequently subsidised. In Rome, similarly to other European cities, around 28% 
of total passenger-kms are taken by transit. In the US, public transit carries less than 1% of passenger kilometers, but receives 
about 25% of all transit funding (USDOT, 2011). Despite this, political support for subsidies is substantial (Cummings and 
Manville, 2015). 
22 They do not focus on estimating external costs and welfare losses. 
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They also demonstrate that the fundamental diagram with a backward bending supply curve under 

hypercongested conditions also exists as a macroscopic fundamental diagram for entire neighborhoods 

with heterogenous road infrastructure. In recent work, Couture et al. (2016) estimate aggregate travel 

supply relations for a large sample of North American cities. Akbar and Duranton (2016) estimate travel 

supply and demand relationships at a citywide level for Bogotá, exploiting travel surveys and Google 

Maps data. Our work is complementary to theirs. We adopt a disaggregate framework that measures 

costs at the level of single roads. Our approach may be less representative of travel costs at a wide area 

level, for example because it does not account for the possibility that drivers avoid heavily congested 

roads by taking detours. On the other hand, our approach provides a more fine-grained view of 

congestion costs at the street level. We show that, even though heavy congestion may be locally 

concentrated (e.g., because only a few roads are jammed at a certain moment), the implied welfare 

losses it produces are relevant in the aggregate.23  

The standard way of measuring the marginal external cost of congestion uses directly 

postulates a positive relationship between travel time and flow in order to derive the optimal road tax, 

as suggested by Pigou (1920). However, this assumption is violated in presence of hypercongestion 

causing underestimates of the marginal external cost and welfare gains of policies that reduce demand 

(Fosgerau and Small, 2013). Nonetheless, the assumption is widely used in the academic literature (e.g., 

Mayeres et al., 1996), in authoritative reports by the US Federal Highway Administration (e.g., FHWA, 

1997) and in much-cited handbooks (e.g., Maibach et al., 2008). We believe we are the first to estimate 

the welfare losses of road congestion while acknowledging endogeneity in the estimation of the travel 

time-density function. Our paper also contributes to the literature on the costs of congestion by 

providing evidence on the spillover effects of congestion on bus travelers.24 To our knowledge, we are 

the first to provide this sort of evidence for a whole city. 

Our paper also belongs to a growing literature that aims to evaluate the congestion relief 

benefit of public transit. Focusing on different cities, Anderson (2014), Adler and van Ommeren (2016), 

and Bauernschuester et al. (2016), have used quasi-experimental approaches exploiting transit strikes, 

                                                           
23 Akbar and Duranton also devise a strategy to deal with endogeneity issues, based on reconstructing trip counterfactuals. 
We tackle this problem differently (see above). 
24 See also Small (2004) who finds that reductions in road congestion induce substantial reductions in travel time for public 
transit travelers.  
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showing that the congestion-relief benefit is significant.25 We contribute to this literature by analyzing 

the marginal effects of partial service shutdowns. Furthermore, by measuring the travel time losses of 

congestion for bus users, we evaluate the congestion-relief benefit also on transit users themselves. 

Finally, in a broader perspective, our paper contributes to a diverse empirical literature 

estimating the importance of transport externalities and the effects of transport policy. Davis (2008) 

analyzes the effects of driving restrictions on air quality. Chay and Greenstone (2005) examine the 

social costs of air pollution. Duranton and Turner (2011; 2012; 2016) and Duranton et al. (2014) 

examine the consequences of highway expansion for congestion, city growth and trade and the effects 

of urban structure on driving and congestion externalities. Baum-Snow (2010) demonstrates the effect 

of highway expansion on commuting flows. Anderson and Auffhammer (2013) examine car weight 

externalities. 

The paper proceeds as follows. In section 2.2, we introduce the theory that underlies our 

empirical identification strategy. Section 2.3 presents the empirical models to estimate the marginal 

external costs of motor vehicle travel as well as the congestion relief benefit of transit. We then 

characterize Rome’s transportation market in section 2.4 and describe the data. Section 2.5 provides 

our main results: the marginal external cost of motor vehicle travel on motor vehicle and bus travelers 

as well as the effect of public transit supply on motor vehicle travel time.26 In section 2.6, we examine 

the welfare effects of public transport subsidies while adjusting public transit supply. Section 2.7 

concludes. 

 

2.2 Theoretical background 

We develop a simple theoretical framework to guide the estimation of the road supply curve, the 

marginal external cost of congestion and the ensuing welfare losses, as well as the congestion relief 

benefit of public transit supply. Our approach considers an isotropic road in a stationary steady-state. 

There is a debate in the literature about whether hypercongestion may provide a stable equilibrium 

given this setup (Small and Verhoef, 2007). Assuming a linear demand function and a homogenous 

                                                           
25 Using aggregate numerical models, Nelson et al. (2007) and Parry and Small (2009) find that during peak hours subsidies in 
excess of 90% of operating cost are justified for Washington D.C., Los Angeles and London. Börjesson et al. (2015) show that, 
despite the adoption of road tolls, substantial subsidies are still welfare enhancing in Stockholm. 
26 We also discuss some other results (reported in appendix) including: the effect public transit fares on motor vehicle travel 
time as well as flow, the effect of public transit supply on motor vehicle flow as well as the relationship between motor vehicle 
travel times and bus travel times.  
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spatial distribution of vehicles, Arnott and Inci (2010) show that the equilibrium is stable but it is not 

clear to what extent this holds in our data. Without spatial homogeneity, a bottleneck, for example, in 

the form of a downstream parking facility is a necessary condition for the occurrence of a stable 

hypercongested equilibria (Verhoef, 1999, 2001). We will demonstrate that our data suggest that 

multiple equilibria are seldom. The presence of multiple equilibria however does not invalidate our 

approach, as in the welfare analysis we will compare the observed equilibria to the optimal equilibrium, 

which we will see is unique. As an alternative approach, one may assume roads that have bottlenecks 

(Arnott, 2013; Fosgerau and Small, 2013). We will also interpret our empirical results assuming roads 

with bottleneck and focus our welfare calculations on non-hypercongested observations. Private motor 

vehicles (cars and motorbikes) share the road with buses. Individuals choose whether to travel and 

which mode to use depending on generalized travel costs. Road congestion affects the travel time of 

motor-vehicle travelers 𝑇 – as well as of bus travelers  𝑇𝑃𝑇.  

 

2.2.1 The road supply curve 

We first focus on the road supply curve. In line with the transport engineering literature (e.g. Helbing, 

2001), we assume that travel time 𝑇 per kilometre is an increasing and convex function of the density 

of motor vehicles on the road, D: 

(2.1) 𝑇 =  ℎ(D), 

where 𝜕𝑇/𝜕𝐷 > 0.27 Using (2.1) and the fact that density is defined as 𝐷 ≡ 𝐹𝑇, where 𝐹 denotes the 

flow of motor-vehicle travelers we can rewrite (2.1) as 𝑦(𝑇, 𝐹) = 𝑇 −  ℎ(FT)  =  0, we find through 

the implicit function theorem that: 

(2.2) 
𝑑𝑇

𝑑𝐹
= −

𝜕𝑦
𝜕𝐹
𝜕𝑦
𝜕𝑇

=

𝜕ℎ(𝐹𝑇)
𝜕𝐹

1 −
𝜕ℎ(𝐹𝑇)

𝜕𝑇

=

𝜕𝑇
𝜕𝐷

𝑇

1 −
𝜕𝑇
𝜕𝐷

𝐹
, 

which describes the relationship between 𝑇 and 𝐹.28 To understand this relationship, note that when 

density is zero, flow is zero as well. Higher density raises travel time and, given (2.2), flow if 𝜕𝑇/𝜕𝐷  <

1/𝐹. However, as density increases, the point where 𝜕𝑇/𝜕𝐷 > 1/𝐹 is reached, so  𝑑𝑇/𝑑𝐹 < 0 

                                                           
27 For the moment, we ignore that motor vehicle travel time depends directly on the number of buses. We account for this 
effect in the empirical analysis. 
28 Similarly it can be shown that: dF/dD=(1-F ∂T/∂D)/T, which describes the relationship between 𝐹 and 𝐷. Note that 𝑑𝑇/𝑑𝐹 
and 𝑑𝐹/𝑑𝐷 have the same sign. 
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and 𝑑𝐹/𝑑𝐷 < 0.29  Greater density of vehicles has a positive direct effect on flow, but a negative 

indirect effect because vehicles travel at lower speed. When the latter dominates, the travel time-flow 

relationship bends backwards, and there is hypercongestion. Figure 2.1 provides an illustration. 

 

Figure 2.1 − Fundamental diagram of traffic congestion.  

 

 

The above discussion implies that there is a maximum flow, defined as 𝐹 ̅ =
1

𝜕𝑇

𝜕𝐷

, and a corresponding 

level of density 𝐷̅. To illustrate, let us assume that 𝑇 = 𝛽𝑒𝛼𝐷, where α, 𝛽 > 0, as proposed by 

Underwood (1961). We adopt this functional form in the empirical analysis, because it provides an 

accurate description of the travel time-density relation for roads in our sample (we test it against more 

general statistical relationships). 30 In this case, we have 

(2.3)  
𝑑𝑇

𝑑𝐹
=

αT2

1 − αD
⟹  𝐷̅ =

1

α
 

Hypercongestion thus occurs when 𝐷 > 𝐷̅.  

 

                                                           
29 Convexity of h(.) is crucial for this argument: if the function is linear, hypercongestion does not occur. 
30 The literature on highways supports our assumption that travel time is an exponential function of density above a certain 
critical value, called the critical density. Below this critical value there is no relationship between travel time and density. 
Typically, the critical density is about 8 motor vehicles per kilometer on a 120 km highway. In our data, only about a quarter 
of density observations are below 8. Within cities, however, the critical density is likely lower. Our results do not change when 
we exclude observations with a density below 8. 
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2.2.2 The demand for transport 

There is a given number of individuals in the transport market, denoted by N, who have perfect 

information. We assume that each individual takes at most one trip and all trips are of equal length, 

normalized to one. Individuals can travel by private motor vehicles, or public transit, or not travel at all, 

and are heterogeneous in their reservation utility of travel by each mode. Aggregate travel demands 

for private motor vehicles and transit are negatively sloped and have positive cross-price elasticities. 

The generalized price of public transit travel, 𝑝𝑃𝑇, increases with travel time, 𝑇𝑃𝑇, and the fare, 𝑓, 

whereas it decreases with transit supply 𝑆 (e.g. through lower waiting times). Hence, 

𝑝𝑃𝑇=𝑝𝑃𝑇(𝑇𝑃𝑇 , 𝑓, 𝑆). In equilibrium, there are 𝑁𝑃𝑇  public transit travelers, 𝐹 motor-vehicle travelers and 

𝑁𝑃 non-travelers, per hour (𝑁 ≡ 𝑁𝑃𝑇 + 𝑁𝑝 + 𝐹). The generalized price of motor-vehicle travel is equal 

to 𝑇, so we put the value of time at unity and ignore all other trip costs. We have 

(2.4) 𝑁 = 𝑁𝑃𝑇(𝑝𝑃𝑇 , 𝑇) + 𝐹(𝑇, 𝑝𝑃𝑇) + 𝑁𝑃(𝑝𝑃𝑇 , 𝑇), 

where 𝑁𝑃𝑇(. , . ) and 𝐹(. , . ) are decreasing in their first argument and increasing in their second 

argument, whereas 𝑁𝑃(. , . ) is increasing in both arguments.  

  

2.2.3 The effect of public transit strikes 

We normalize the supply of public transit (veh-kms), assuming fixed seat capacity, during regular 

service to one and denote by S∈[0,1] the share of service available per unit of time. This quantity is 

defined as the ratio between the quantity of service actually provided and the scheduled supply with 

regular service. If a public transit strike takes place, 𝑆 is less than one. Because motor vehicles and 

public transit are substitutes, demand for motor-vehicle transport goes up, so in the new equilibrium, 

𝑇 and D increase. If the road is not hypercongested, the number of motor vehicle travelers (i.e., traffic 

flow) goes up during a strike. However, in presence of hypercongestion, the number of motor vehicle 

travelers may decrease.31 The economic loss produced by the ensuing travel time increase is the 

(negative of) the congestion relief benefit of public transit to motor-vehicle travelers. Furthermore, 

because 𝑇 goes up, if transit and private vehicles share the road, 𝑇𝑃𝑇 increases as well. Hence, demand 

for motor-vehicle travel increases even more. In addition, there is a travel time loss to public transport 

                                                           
31 During a strike, ‘demanded flow’ is higher but throughput at the measurement location is temporarily lower because of 
hypercongestion. See footnote 30 for stability considerations. 
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travelers, the (negative of) the congestion relief benefit of public transit to public transport travelers. 

Finally, because 𝑇 and 𝑝𝑃𝑇 both go up, 𝑁𝑃 goes up as well. 

 

2.2.4 Equilibrium 

To facilitate the interpretation of the empirical results later on, we make three major assumptions 

about the equilibrium. First, we take one hour as our unit of time. Hence, hourly demand and supply 

are equal to each other. We ignore any variation in demand within the hour.32 Second, we assume that 

the demand function is linear with a time-invariant slope: any temporal variation in demand occurs 

because of shifts in the intercept.33 Furthermore, any temporal variation in the demand function is 

exogenous to traffic conditions (e.g., workers must be at work at a certain time). Hence, we disregard 

that demand functions are interrelated during the day, for example because of rescheduling of trips to 

avoid excessive congestion. In addition, we assume that demand functions are independent per link so 

that serial link interactions are ruled out.34 

 

2.2.5 Welfare analysis  

The total cost for society of private motor-vehicle travel equals 𝐹 · 𝑇 (we normalize the value of travel 

time to one). The standard quantity capturing the distortions on the transport market is the marginal 

external cost of motor-vehicle travel. This cost is defined as the difference between the time cost to 

society of a marginal motor-vehicle user and the time cost to this user. One of our objectives in the 

empirical analysis is to measure this cost. We consider the travel cost of bus users below.  

 We introduce now a measure of the marginal external cost, denoted 𝑀𝐸𝐶. Total differentiation 

of the social costs and subtracting the average cost T shows that: 

(2.5) 𝑀𝐸𝐶 =
𝑑[𝐹𝑇(𝐷)]

𝑑𝐹
− 𝑇  =

𝑑𝑇

𝑑𝐹
𝐹 +  𝑇 − 𝑇 =

𝑑𝑇

𝑑𝐹
𝐹 =

𝜕𝑇
𝜕𝐷

𝐷

1 −
𝜕𝑇
𝜕𝐷

𝐹
 

                                                           
32   This might lead to underestimates of the welfare losses of congestion (and the pervasiveness of hypercongestion). This 
can be shown by noting that travel time is a convex function of density, and therefore that travel time is a convex function of 
flow, when density is in the hypercongested range. For hypercongested hours, traffic inflow exceeds outflow for the early 
phases where the queue grows, and reversely where it declines so that supply might not necessarily exactly equal demand for 
these hours. 
33 Our results, shown in the Appendix Figure 2.A3, also hold when we assume that demand has a constant elasticity per hour 
and road.  
34 When hypercongestion is a result of serial link interactions the potential welfare gains might be lower. 
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where the final step follows from (2.2). 

Let us focus on equilibria where the road is not hypercongested, so 1 −
𝜕𝑇

𝜕𝐷
𝐹 is positive and less 

than one. 35  An increase in density, e.g. due to an upward shift in the demand for motor vehicle travel, 

causes an increase in the steady-state flow. It follows that 𝑀𝐸𝐶 is positive. Assume again that 𝑇 =

𝛽𝑒𝛼𝐷. Then 𝑀𝐸𝐶 = αD 𝑇 /(1 −  αD) .   

We use 𝑀𝐸𝐶 as a key input for our welfare analysis. Let us suppose that there are no other 

distortions and that the government aims to maximize welfare. The standard prescription is to 

introduce a road tax equal to MEC (evaluated at the optimum). The tax will then induce an optimal flow 

below the equilibrium one (assuming the road is initially not hypercongested). The welfare gain (i.e. 

the eliminated deadweight loss) is straightforward to calculate. It depends, among other things, on the 

shape of the demand function. For example, when demand is horizontal, the welfare gain is exactly 

equal to optimal flow times the ensuing reduction in travel time. By contrast, if demand is vertical, the 

welfare gain is zero (because there is no reduction in travel time). See Figure 2.2, where we show the 

average cost function – travel time as a function of flow – as well as the marginal social cost, MSC, for 

the part where the average cost function is upward sloping. MEC is the difference between the MSC 

and the average cost T. 

In principle, governments may prevent hypercongestion by imposing tolls on vehicles entering 

the parts of the road network where density exceeds the level associated with maximum flow. Pricing 

instruments alone may not be well-suited to control hypercongestion. Indeed, the first-best toll is equal 

to the MEC evaluated at the optimal allocation, which, as pointed out before, lies on the upward sloping 

part of the supply curve. This tax may not be sufficient to avoid hypercongestion. Governments can 

intervene by adopting quantity restrictions (possibly in combination with pricing instruments). These 

include (second-best) policies such as adaptive traffic lights. Traffic-engineering studies show that 

reducing inflow of traffic into cities by letting vehicles waiting longer for traffic lights when entering the 

city reduces hypercongestion, resulting in an equilibrium with lower travel times but potential welfare 

losses from waiting at traffic lights (Kouvelas et al., 2017). 

 

 

                                                           
35 Equation (2.6) suggests that when 𝐹 is close to 𝐹̅, which equals 1/(𝜕𝑇/𝜕𝐷), the external cost of adding one vehicle is 
infinite, which is not intuitive (given that travel time is finite when 𝐹 = 𝐹̅). However, noting that the number of vehicles is 
discrete, it appears that for 𝐹 = 𝐹̅ − 1, 𝑀𝐸𝐶 is equal to 𝐹̅𝑇, which is finite. 
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Figure 2.2 − Deadweight loss (DWL) from congestion with horizontal and vertical demand 

 

   

Let us now focus on the effect of congestion on bus travelers. We have noted that the 

generalized price of public transit, 𝑝𝑃𝑇, increases with travel time, 𝑇𝑃𝑇. Not surprisingly, if buses share 

the road with other vehicles, the travel time of buses is strongly correlated with the travel time of 

motor-vehicle travelers, 𝑇. We note two empirical observations about bus travel time. First, it is 

substantially higher than motor vehicles’ travel time (for instance, because of the time spent stopping 

at bus stops). Second, bus speed depends on motor vehicles’ speed in a linear way with a marginal 

effect less than one. These observations imply the following relationship between the travel times of 

public transit and of private motor vehicles: 

(2.6) (𝑇𝑃𝑇)−1  =  𝜃𝑇−1  − 𝜇,   𝜇 > 0;  0 < 𝜃 < 1; 𝑇−1  − 𝜇 > 0 

Hence: 

(2.7) 
𝜕𝑇𝑃𝑇

𝜕𝑇
=

𝜃𝑇−2

(𝜃𝑇−1  − 𝜇)2
> 1. 

The marginal effect of motor-vehicle time on travel time of public transit is larger than one, and the 

relation between bus and motor-vehicle time is concave.36 For sufficiently small 𝜇, so that public transit 

speed is proportional to motor-vehicle speed, the marginal effect is a constant: 

(2.8) 
𝜕𝑇𝑃𝑇

𝜕𝑇
≈

1

𝜃
. 

                                                           
36 The intuition is that smaller motor vehicles such as motorbikes receive a lower travel time penalty from congestion than 
larger public transit buses that are more easily blocked.  
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Hence, one approach to calculate the marginal external cost of motor-vehicle travel on bus users is as 

follows: 

(2.9) 𝑀𝐸𝐶 𝑜𝑛 𝑏𝑢𝑠  =
𝑑𝑇

𝑑𝐹

𝑁𝑃𝑇

𝜃𝐹
. 

This approach is indirect, as it uses information on the relationship between bus and motor-vehicle 

travel times. We also employ an alternative, direct approach to estimate the marginal external cost 

borne by bus travelers. Specifically, we assume that 𝑇𝑃𝑇 = 𝛾𝑒𝜎𝐷and then totally differentiate 𝑇𝑃𝑇 𝑤ith 

respect to flow. It can be shown that: 

(2.10) 𝑀𝐸𝐶  𝑜𝑛 𝑏𝑢𝑠   =
𝑑𝑇

𝑑𝐹
𝑁𝑃𝑇 [

𝜎

𝛼
(1 − 𝛼𝐷)

𝑇𝑃𝑇

𝑇
+ 𝛼𝐷

𝑇𝑃𝑇

𝑇

𝑑𝑇𝑃𝑇

𝑑𝑇
]  >

𝑑𝑇

𝑑𝐹
𝑁𝑃𝑇

𝜎

𝛼

𝑇𝑃𝑇

𝑇
. 

We find that 𝜎 is only slightly higher than 𝛼, and that 
𝑇𝑃𝑇

𝑇
 is approximately equal to 

1

𝜃
, so the direct and 

indirect approach provide very similar results. 

 

2.3 Empirical Approach 

We are interested in estimating the marginal external cost of congestion on motor-vehicle drivers. To 

do so, we need information about the relationship between motor-vehicle travel time and flow. Given 

hypercongestion, the relationship between 𝑇 and 𝐹 is not an injective function. Therefore, one cannot 

apply standard econometric techniques to estimate it. We therefore proceed as follows: we first 

estimate the effect of density on travel time using (2.1) and then combine this estimate with (2.2) to 

derive 𝑑𝑇/𝑑𝐹.  Given estimates of h, denoted by ℎ̂, for each observation of D, we calculate the 

predicted travel time 𝑇̂  =  ℎ̂(D), as well as the predicted flow 𝐹̂  =  D/𝑇̂. We show that the travel-time 

flow relationship obtained using 𝑇̂  and 𝐹̂ accurately predicts the observed travel-time flow 

relationship.37 

Let us now assume that h is an exponential function, so 𝑇 = 𝛽𝑒𝛼𝐷. This specification implies 

that the logarithm of travel time is a linear function of density. We have observations which vary by 

                                                           
37 Keeler and Small (1977) address this issue by estimating flow directly as a quadratic (and therefore possibly non-monotonic) 
function of travel time and then invert the estimated function. There are two difficulties with this approach. First, it usually 
does not provide the causal effect of flow on travel time. Second, even if the goal is to obtain the best fit between flow and 
travel time, this approach has a worse fit, at least for the data of Rome, although it includes more parameters compared to 
our approach which estimates time as a function of density. The latter result is intuitive, because the relationship between 
(log) travel time and density is monotonic, and almost perfectly linear, and therefore "easy to estimate", whereas the 
relationship between flow and travel time is nonmonotonic, and therefore "difficult to estimate". 
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road and hour. We will therefore assume that log𝑇𝑖,𝑡,𝐷, at road i, hour t and day D is a linear function 

of density 𝐷𝑡,𝐷, given several controls 𝑋𝑡,𝐷, road fixed-effects 𝜏𝑖 and an error term 𝑢𝑖,𝑡,𝐷, so that: 

(2.11) 𝑙𝑜𝑔𝑇𝑖,𝑡,𝐷 = 𝜏𝑖 + 𝛼𝐷𝑡,𝐷 + 𝜅′𝑋𝑡,𝐷 + 𝑢𝑖,𝑡,𝐷. 

Road fixed effects capture time-invariant differences in road supply such as lane width, the speed limit 

as well as the distance of the measurement point to the next intersection. The controls 𝑋𝑡,𝐷 include 

weather (i.e. temperature using a third-order polynomial, precipitation) and many time controls: hour-

of-weekday fixed effects (e.g., Monday morning between 9 and 10 a.m.) and week fixed effects. These 

time controls aim to capture for unobserved changes in supply (e.g. due to road works which only occur 

during certain periods). We emphasize however that the estimates without these controls are almost 

identical. We cluster standard errors by hour, so we allow 𝑢𝑖,𝑡,𝐷 and 𝑢𝑗,𝑡,𝐷 to be correlated.38 

One econometric difficulty with estimating (2.11) is that density is most likely endogenous, 

because it is defined as the flow multiplied with travel time – which is the dependent variable of 

interest. This may be problematic as in many studies – including the current one – density is not 

explicitly observed but derived from observations of flow and travel time. Therefore, any measurement 

error in travel time causes a positive correlation between travel time and density resulting in an 

overestimate of the effect of density.39 Measurement error is not the only source of endogeneity. For 

example, unobserved supply shocks (e.g. road closures, accidents…) may simultaneously affect density 

(directly or indirectly measured) and travel time.40 In the estimation procedure, to deal with 

endogeneity issues, we will use an instrumental variable approach using variation in the share of public 

transit, S, due to strikes, which causes an exogenous demand shock to motor-vehicle’ road travel. Note 

that the use of time controls in (2.11) has an additional rationale when employing an instrumental 

variable approach. Time controls also capture any variation in the supply of scheduled public transit 

(i.e., the schedule in the absence of strikes), which makes it more plausible that public transit share is 

exogenous. 

One issue when using public transit strikes as an instrument is that changes in public transit 

supply directly change the number of vehicles on the road (as buses disappear), which may invalidate 

the assumption that bus strikes are valid instruments of motor-vehicle density. This is a minor issue 

                                                           
38 Hence, each cluster contains a number of observations equal to the number of road segments observed.  
39 See footnote 19.  
40 That unobservables might shift the supply function by affecting density and travel time simultaneously is not problematic 
for our estimation as long as the shock to the supply function is not correlated with our instrument. The weather can also be 
a factor that affects both travel time and density. We control for weather conditions in our empirical analysis, see below.  
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however, because on average 1 percent of all vehicle flow in Rome refers to buses (specifically, only six 

buses pass a road per hour). Nevertheless, we have addressed this issue by estimating models where 

we explicitly acknowledge that an increase in public transit increases the number of vehicles on the 

road. For example, when we assume that one single bus causes the same travel delays as 10 motor 

vehicles, we still get identical results when instrumental variables approaches. 

A second issue is that (2.11) may be a restrictive specification. To deal with this issue we specify 

log travel time as a quadratic function of density and apply control functions approaches to instrument 

density. Finally, a third issue is that it is unlikely that the marginal effect of density is equal for all roads. 

We therefore allow the marginal effect on density to be road-segment specific.41 

Given estimates based on (2.11), we can estimate MEC using (2.2). Intuition suggests however 

that this approach does not generate precise estimates when F approaches 𝐹 ̅, because the supply 

curve is vertical. More formally, this can be demonstrated when assuming that 𝜕𝑇/𝜕𝐷 is a random 

variable with a given standard deviation, 𝑣𝑎𝑟(𝜕𝑇/𝜕𝐷). Recall from standard statistical theory that the 

ratio of two random variables does not have a well-defined variance. It is then standard to approximate 

the variance using a Taylor expansion. Using such an approach it can be shown that the variance of 

MEC can be written as follows: 

(2.12) 𝑣𝑎𝑟(MEC)  ≈
𝑣𝑎𝑟(𝜕𝑇/𝜕𝐷) 𝐷

(1 −
𝜕𝑇
𝜕𝐷

𝐹)
4

2

. 

The denominator of this expression contains a power of four. Combined with (2.2), this implies that the 

estimate of MEC divided by its standard error goes to zero when F approaches 𝐹 ̅. Thus, the estimates 

for marginal external cost for levels of flow close to its maximum may be unreliable. Although there are 

only few observations of flow close to the maximum in our data, we will exclude these observations 

(our estimate of the total welfare loss of congestion remains unaffected by this issue). 

We also aim to estimate the marginal external cost of congestion on bus travelers. In the 

empirical analysis, because we have data per year and cannot distinguish between roads, we use 

aggregate data on bus travelers time. However, we are able to estimate the effect of motor-vehicle 

travel time on bus travel time, see (2.8), which allows us to calculate (2.9). Furthermore, we can 

                                                           
41 A further minor issue is that an increase in demand may have an ambiguous effect on density due to the presence of multiple 
equilibria when the road supply curve is backward-bending. Nevertheless, as we demonstrate below, hypercongestion 
happens seldom in our data and multiple equilibria are unlikely. 
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estimate the effect of log motor-vehicle density on bus travel time, σ, which allows us to calculate 

(2.10). 

We also estimate the effect of public transit supply on private motor vehicle travel time, 

exploiting variation during strikes. The underlying mechanism is that public transit supply reduces 

motor vehicle density (which we intentionally not control for in this model) and thereby travel time. 

We follow the literature by relying primarily on linear models (Anderson, 2014). The dependent 

variable, 𝑇𝑖,𝑡,𝐷, is estimated as a linear function of public transit share 𝑆𝑡,𝐷 using the same type of data 

and controls as in (2.11), so that: 

(2.13) 𝑇𝑖,𝑡,𝐷 = 𝜏𝑖 + 𝜑𝑆𝑡,𝐷 + 𝜌′𝑋𝑡,𝐷 + 𝜖𝑖,𝑡,𝐷 

where the coefficient 𝜑 captures the marginal effect of public transit share, 𝜕𝑇/𝜕𝑆.42 We estimate 

(2.13) using weighted regression where the weights are proportional to the (hourly) flow per road to 

make the estimated 𝜑 representative for the average motor-vehicle traveler in our sample and cluster 

standard errors by hour.43 In a sensitivity analysis, we will examine to what extent 𝜑 depends on the 

level of public transit supply S. In a similar way, we estimate the marginal effect of public transit share 

on motor-vehicle travel flow 𝐹𝑖,𝑡,𝐷, hence, 𝜕𝐹/𝜕𝑆. 44 

   

                                                           
42 The week fixed effects in this specification also control for the effect of a substantial public transit fare increase in May 
2012. To control for unobserved factors that vary between days, we will also estimate models with day fixed effects.  
43 In the sensitivity analyses, we demonstrate that our results do not depend on the way we cluster standard errors. 
44 One substantial public transit fare increase took place during our period of observation. This allows us to estimate the effect 
of a public fare change on motor-vehicle travel time using a discontinuity regression approach. We use this estimated effect 
as a robustness analysis and as input for welfare analysis. 
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2.4 Data 

2.4.1 Rome 

Rome is Italy’s capital and largest city, with a population of 2.9 million inhabitants (4.3 million including 

the metropolitan area). The city belongs to the Lazio region, and includes more than 80% of the region’s 

population. The city is densely populated and essentially monocentric around the ancient core. Rome’s 

street network is largely based on the ancient Roman plan, connecting the center to the periphery with 

primarily radial roads that get narrower as one approaches the center. The city is heavily dependent 

on motorized travel: 50% of trips are by car and an additional 16% by motorbike/ scooter. Roughly, 

28% of all annual trips take place by public transport, similarly to other large European cities such as 

Paris and Berlin. In the metropolitan area of Rome there are 1.65 billion motor vehicle trips per year, 

equivalent to 21.5 billion passenger kilometers or 14.5 billion vehicle-kms, 42 percent of which takes 

place during peak hours (using information from Citta’ di Roma, 2014).45 The rest of the trips take place 

either by walking or by bicycle. The city is one of the worst performing European cities in terms of air 

pollution and road congestion. The average speed on inner-city roads can be as low as 15km/h on 

weekdays. 

 

Table 2.1 – Descriptive statistics for the Rome metropolitan area  

    Car Bus Rail 

    Peak Off- Peak Off- Peak Off- 
         Peak   Peak   Peak 

Annual veh-kms, millions 6,116 8,445     
Annual passenger kms, millions 8,623 12,837 3,403 2,304 1,639 628 
Vehicle occupancy (pass-km/veh-km)   51 34 160 87 

          
Operating cost, €/veh-km   10 5 29 17 
Fare, €cents/pass-km    5 5 5 5 
Subsidy, % of average operating cost   75 69 74 76 
Generalized price, €cents/pass-km   34 40 25 27 

Source: Own calculations based on information for the year 2013, from Rome’s General Traffic Plan (PGTU, 2014). 

 

                                                           
45 According to the Rome municipality, 376,024 motor-vehicle trips take place during peak hours. We assume 252 working 
days per year, 7 peak hours and 9 off-peak hours per working day, whereas each non-working day has 16 off peak hours. 
Further, the number of trips during off-peak hours is assumed to be two thirds of the number in peak hours. We get then 
1,685,599,000 trips per year. We assume an occupancy of 1.4 (1.51) passengers per vehicle in peak (resp. off peak) hours). To 
obtain the quantity of passenger-kms, we multiply annual trips by the average trip length of 13km as reported by the Rome 
municipality (PGTU, 2014). 
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The rate of motorization is high for a large European city, with 67 cars and 15 motorcycles per 

100 inhabitants (about double the figures for Paris and London). There are 1.6 cars per household. The 

high car ownership rate combined with substantial public transit use suggests that many regular transit 

users have access to a private vehicle and are potentially able to switch mode in the event of a transit 

strike. 

Rome has a restricted access zone for motorized traffic, called ZTL (Zona a Traffico Limitato).46 

This restricted access zone is a small part of Rome’s historic center where car inflow is restricted to 

permit holders who can enter during certain hours of the day. Permits are mainly for businesses and 

government officials. We observe the inflow and outflow of vehicles for this zone, but have no 

information about traffic within the zone.47 

 

2.4.2 Public transit in Rome 

Public transit accounts for about 8 billion annual passenger kilometers in Rome, i.e. roughly 27% of 

total travel (ATAC SpA, 2013). The lion’s share of public transit supply is through buses (about 70% in 

terms of vehicle-kms as well as passenger-kms) see Table 2.1. Annual subsidies to public transport 

amount to €1.04 billion, i.e. is approximately 72% of annual operating of costs (€1.56 billion in 2013). 

The average operating cost per trip is about €0.90 (i.e., €0.08 per passenger kilometer) and the price of 

a single ticket is €1.50.  

 

Table.2 2 – Public transit stock in Rome 

Public transit company Buses Metro (cars) Train (cars) Employees 

Atac SpA 2,700 (+165 trams) 83 55 11,696 

Roma Tpl Scarl 450   839 

Total  3,315 83 55 12,525 

Note: Information for ATAC refers to the year 2015. For Roma TPL the data refers to the year 2011. 

 

The provision of public transit services in Rome is assigned to a large provider, ATAC SpA 

(almost entirely owned by the Rome municipality), and several much smaller bus companies, operating 

                                                           
46 Restricted access is not new to Rome’s historic center. In the 1st century BC, Julius Caesar banned wheeled traffic from 
entering Rome during the first ten hours of daylight (Cary, 1929). 
47 The city lifts restrictions on strike days, but the zone´s vehicle in- and outflow is less than 1% of all trips in the city. This 
suggests that the effect of the latter policy on average travel time within the city is small. 
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under the banner of Roma TPL. ATAC covers approximately 90% of the transit market, operating about 

360 bus and tramlines, with a fleet of 2,700 buses and 165 trams. It also operates three metro lines 

with 83 metro carriages, and three train lines connecting Rome with the region of Lazio.48 See Table 

2.2. 

 

2.4.3 Transit strikes in Rome 

Information on strikes is provided by the Italian strike regulator (Commissione di Garanzia per gli 

Scioperi). Due to the availability of traffic data (see below), our period of observation spans from 

January 2nd 2012 to May 22nd 2015, i.e. 769 working days. There are 43 public transit strike days during 

this period.49 27 of these strikes took place only in Rome (and possibly the Lazio region), whereas the 

other 16 are part of national strikes that possibly affected other transportation modes, e.g. aviation.50 

We do not distinguish between which providers are affected by the strike.51 There is a strike on 6% of 

the days on our observation period – strikes are a frequent occurrence in Rome. This observation is 

relevant, because strike frequency may increase the likelihood of car ownership, and thus the elasticity 

of demand responses during strikes.  

All strikes in our data were announced to the public several days in advance. Seven were 

partially cancelled (by one of the participating unions). We refer to the latter as semi-cancelled strikes 

in the sensitivity analysis (in Appendix 2.A). An additional three announced strikes were fully cancelled 

shortly before taking place. We will refer control for the cancelled strike days.52 

Italian law does not allow full transit service shutdowns during strikes, mandating a high 

minimum service level during peak hours. Consequently, the strikes we observe are partial, in the sense 

that a positive share of service is always provided. Moreover, regulation forbids (with rare exceptions) 

                                                           
48 The number of metro lines is exceptionally low for a European city of comparable size. Archeological excavations and 
financial issues have historically hindered construction. The third metro line (Metro C) is partly operational since June 2015, 
which is outside our observation period. 
49 Strike activity is distributed about equally over the years with at least 7 strikes a year. We ignore 7 additional strikes which 
occurred on days where traffic data is insufficient. Strikes are usually due to workers’ grievances due to unpaid wages.  
50 Two of the strikes fall into a white-strike period (between the 7th and the 27th of June 2014). White strikes refer to a labor 
action whereby bus service is reduced through strict adherence to the providers’ service rules (e.g., bus maintenance periods, 
boarding regulation and ticket controls). 
51 Strikes of different public transit providers usually coincide see Figure 2.A3 in the Appendix (possibly because unions are 
not firm specific and overlap multiple providers). Hence, we may ignore which provider is affected although these firms 
operate in different geographical areas. 
52 We do not find any effect of these cancelled strikes on motor-vehicle travel time. Given an estimation strategy based on 
public strike days, it is useful to interpret the effect of the cancelled strikes as a placebo test. However, because our 
identification is based on public strike hours, and we include day fixed effects, the placebo test is redundant. 
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strikes during holiday months, i.e. in February, August and most of September. Excluding these months, 

the distribution of strike activity is quite even over the year, with somewhat higher concentration in 

the spring period (see Figure 2.A1 in Appendix 2.A). Most strikes take place on Mondays and, in 

particular, Fridays (see Figure 2.A2 in Appendix A). We do not observe strikes on weekends, so we 

exclude all weekends from our analysis (regulation restricts striking on weekends). We also exclude 

nighttime hours because there is no public transit service between midnight and 5am.53  

 

Figure 2.3 – Public transit share for strikes  Figure 2.4 – Public transit share per strike hour 

 

 

In contrast to earlier studies on transit strikes (Anderson 2014, Bauernschuester et al. 2015, 

Adler and van Ommeren 2016), we have information about hourly strike intensity. Specifically, Rome’s 

Mobility Agency (Agenzia per la Mobilita’) provided us with the share of scheduled service (based on 

the regular schedule during non-strike days) that actually took place during strike hours. This implies 

that we can exploit hourly variation in the share of available public transit for identification purposes. 

We use information on this share at the city level: we do not observe service provision on each 

particular segment of the network.54  

During strike hours there are, on average, 839 buses/trams operating, in comparison to 1,496 

buses/trams during non-strike hours. There is substantial variation in the hourly share of public transit 

                                                           
53 Public transit fare prices are constant during our period of observation except for one major change in May 2012. We will 
use this fare change to derive the price elasticity demand for public transit as well as the cross-price elasticity for car travel. 
54 This feature of the data is of little importance to our study. During strikes, the public transit agency allocates available buses 
to the most important lines (those serving the largest volume of passengers). In all likelihood, the agency would behave 
similarly if it had to reduce service permanently, e.g. due to budget cuts. Furthermore, we expect transit users to change to 
other bus lines during strikes. Because we are interested in the effect on traffic at the city level, observing which lines are 
affected is not crucial.    
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available during strikes, as can be seen in Figure 2.3. This share varies between 0.05 and 0.83, the 

average being 0.56. Note that we observe relatively few strike (peak) hours with low intensity due to 

the regulatory scheme mentioned above. In Figure 2.4, we provide the range and three quantiles for 

the distribution of transit available share distribution over the day. The median share is highest during 

the 8 a.m. morning peak (about 0.75) and the 7 p.m. evening peak hour (about 0.65). During these 

hours, the variation in the share is also small. From 9 a.m. to 3 p.m., the share is not only substantially 

lower, but the range in the share is also much higher.  

We also have information on the scheduled service level (i.e., the number of buses operating 

per hour) for five main bus lines on non-strike days.55 Assuming that the other bus lines follow the same 

schedule, it appears that the total number of operational buses in Rome does not vary between 8am 

and 5pm except when there are strikes (Figures 2.A4 and 2.A6 in Appendix 2.A), supporting the use of 

strikes as a way of identifying the effects of public transit supply. 

 

2.4.4 Motor-vehicle traffic data 

Our data on motor vehicle traffic is provided by Rome’s Mobility Agency. It contains information on 

hourly flow and travel time for 33 measurement points in Rome, for a period from the 2nd of January 

2012 to the 22nd of May 2015.56 Motor vehicles are cars, commercial trucks and motorbikes, as the 

measurement stations do not distinguish between these types of vehicles. 

The measurement locations, chosen by the Agency, include twelve one-lane roads – all located 

in the city center and with a speed limit of 50km/h (1.2 min/km). The other 21 roads contain two lanes. 

These include seven large arterial roads with a speed limit of 100 km/h (0.6 min/km), eight with speed 

limits between 60 and 100 km/h and six with the speed limit of 50 km/h. Information from the 

measurement locations is sometimes missing (meters are sometimes malfunctioning). During some 

hours, we have information from only a couple of measurement locations. To avoid identification based 

on a few measurement locations, we only include hourly information from a measurement location 

when at least 19 other measurement locations are observed in our data (we exclude 2.2 percent of 

total observations).  

                                                           
55 See http://www.atac.roma.it/page.asp?p=18. 
56 See Figure 2.A5 in the Appendix for a map of the measurement locations. We also have information on eleven additional 
measurement locations. However, we ignore them because they are either too close to traffic lights (hence provide unreliable 
information on flow) or present extreme variation in flow over the period observed. This variation is likely due to 
malfunctioning of loop detectors or road supply shocks (e.g., closure of lanes). 
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We measure flow in number of motor vehicles per minute per lane and travel time in minutes 

per kilometer. We calculate density based on the observed flow and travel time. This means that density 

is measured in number of motor vehicles per kilometer per lane. We exclude extreme outliers.57 In 

total, we have 422,691 hourly observations for motor vehicle flow, density and travel time.58 We give 

descriptive information in Table 2.3. Approximately five percent (23,018) of these observations is 

during strikes.  

On average, travel time is roughly 1.3 min/km, which implies that the average speed is 

approximately 50 km/h. Note that this average speed is far above the average speed of a trip, mainly 

because we exclude waiting time near traffic lights and extremely congested roads in the inner-city. 

Hence, if anything, we underestimate the presence of congestion. Furthermore, in our data, flow per 

lane is above 11 vehicles per minute and density is about 13 motor vehicles per kilometer. The 

distributions of travel time, flow and density can be found in Figures 2.A7 to 2.A9 of Appendix 2.A.59  

 

Table 2.3 – Average values, travel time, density and flow  
 Travel time Density Flow Obs. 

Strike 1.365 14.6 11.1 23,018 

No strike 1.327 13.4 10.5 399,673 

Total 1.330 13.5 10.6 422,691 

Note: Travel time in minutes per kilometer; density in vehicles per kilometer; flow in vehicles per minute per lane. 

 

In Figures 2.5 and 2.6, we provide information about average travel time and density by hour 

of the day (information about average travel flow by hour of the day can be found in Appendix A, see 

Figure 2.A10). These figures indicate that on average travel time, density and flow are higher during 

strikes.60 In these figures, we single out intensive strikes – whereby the public transit available share is 

below 0.5. Travel time, density and flow appear systematically larger during intensive strikes. Figure 

2.5 also shows clearly that during peak hours the increase in travel time is substantially larger, implying 

                                                           
57 We drop few observations when travel time either exceeds 5 min/km or is below 0.4 min/km, when flow is zero or exceeds 
2,100 vehicles per hour. The results are robust to the inclusion of these outliers. 
58 Information on the month of August 2012 and a few other days are missing. August 2012 is missing, because the data 
collection agency moved office in this month. The few other days are missing for unknown reason. 
59 We weigh all descriptive statistics for travel time by flow, as we are interested in the travel time per motor-vehicle. 
60 It is possible that the composition of motor vehicles changes during strikes, which causes additional welfare losses. 
Anecdotal evidence suggests that public transit users in Rome tend not to have access to motorcycles/scooters (which are 
mainly used by relatively young travelers, independently of traffic conditions). However, most transit users do have access to 
cars, so the increase in flow is likely predominantly due to cars. 
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that the marginal effect of public transit strikes is higher during these hours. Not surprisingly, the 

figures also indicate that traffic flow, density and travel times are larger in peak than in off peak hours. 

Travel time, flow and density are respectively 13, 38 and 50 percent larger during the peak. 

The above figures provide information for average traffic conditions, and thus mask substantial 

differences between roads. Several of the effects we measure below, e.g. the congestion relief effect 

of public transit may differ between roads because of differences in their congestion level. Hence, it is 

useful to classify the road in our sample accordingly. We define a road as heavily congested during a 

certain hour when the speed on that road is less than 60 percent of free-flow speed, defined by the 95 

percent percentile of the speed distribution observed on that road. Using this definition, roads in our 

sample are heavily congested about one hour per day, or 5 percent of the time. However, there is 

extreme variation between roads. Figure 2.7 shows for all roads the average number of hours per day 

that a road is heavily congested. In the figure (and in the empirical analysis below), we single out 10 

“heavily-congested” roads, defined as such because they are heavily congested (according to our 

definition above) at least one hour per day.61 On average, these 10 roads are heavily congested three 

hours per day.  

 

Figure 2.5 – Travel time by hour of the day  Figure 2.6 – Density by hour of the day 

 

 

In theory, a road is hypercongested when, for given flow, the travel time lies on the backward 

bending portion of the supply curve. In Figures 2.8 and 2.9, we depict the travel time-flow curve for, 

                                                           
61 The same 10 roads show a backward bending relation between travel time and flow, indicating the presence of 
hypercongestion for some hours.  
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respectively, a road that clearly shows signs of hypercongestion and for one where hypercongestion is 

absent. However, in practice it is not always clear for each hourly observation whether the road is 

congested or not. To illustrate, consider the road in Figure 2.8 – which clearly exhibits hypercongestion 

– and focus on observations of flow around 25 motor vehicles per minute, but where travel times are 

in between the (to be estimated) backward-bending average cost (supply) curve. It is a priori unclear 

whether these observations refer to hours where the road is congested or hypercongested. 

To deal with this issue, we define a road as hypercongested in a given hour if and only if traffic 

density exceeds the level associated with maximum flow (formally defined as 𝐷̅, see expression (2.3) in 

Section 2.2.1). For each road, we calculate this level using our estimates of the travel time-density 

relationship on an hourly basis (see Section 5.1 below). Note that this definition implies that if a road 

is hypercongested for only a couple of minutes during a certain hour, we do not consider it as 

hypercongested. Hence, we most likely underestimate the pervasiveness of hypercongestion. Note also 

that the above definition of ’heavily congested road’ does not imply that a road is hypercongested. 

Traffic on a road may be very slow on a given hour for reasons not directly related to density (e.g., 

because a high share of cars cruises for parking). However, all roads that we identify as hypercongested 

in a given hour also turn out to be heavily congested. 

 

Figure 2.7 – Daily number of heavily congested hours per road (33 roads) 
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Figure 2.8 – Hypercongested road Figure 2.9 – Congested road 

 

 

Finally, note that we estimate specifications which assume that the logarithm of travel time is 

a linear function of density. In the Appendix (Figure 2.A12) we show this relationship for the same road 

depicted in Figure 2.8. The figure indicates that this assumption is reasonable. A similar conclusion 

applies for the other roads in our sample. 

 

2.4.5 The effect of road congestion on bus travel times 

The Rome Mobility Agency provided us with information on the in-bus travel time (i.e. excluding 

boarding times). Specifically, we observe the hourly average travel time of buses for the 19 hours in a 

day --from 5am to midnight— where transit service is active, from 2012 to 2015. This average is 

computed on a yearly basis, distinguishing hours per the service schedule. There are six different service 

schedules in a year: one for weekdays, one for weekends and one for festive days during the schoolyear 

period (from September to May) and three corresponding schedules for the summer period (from June 

to August).62 We have a total of 380 hourly observations.  

 

                                                           
62 For example, one observation is the average bus travel time from 11am to 12am for weekdays from January 2012 to May 
2012 and from September 2012 to May 2013. Another observation is the average travel time from 11am to 12am on weekends 
over the same period, and so on. Information for August 2012 and the second half of 2015 is missing. 



2.4   Data 

25 
 

Figure 2.10 – Travel times of public and private motor vehicles 

 

 

The average bus travel time is 2.79 minutes per km, twice the average travel time of private 

motor vehicles. Because buses rarely travel on dedicated lanes in Rome, we expect travel times of 

public transit and motor vehicles to be strongly correlated. Figure 2.10, where we plot the hourly 

observations of bus travel time and motor vehicle travel time, confirms this expectation. The data 

indicate a correlation of 0.79 between these travel times. Furthermore, a one-minute increase in motor 

vehicle travel time is associated with an increase in bus travel time of 2.8 minutes.63 Consequently, 

higher congestion levels imply much larger time losses for bus travelers than for motor-vehicle 

travelers. This suggests that the external congestion costs on bus travelers may be substantial. We 

examine this issue below. 

                                                           
63 This effect is so pronounced, because i) bus speed appears almost one-to-one related to motor-vehicle speed, ii) average 
bus speed is much less than average motor vehicle speed; iii) the marginal effect of speed on travel time is equal to minus the 
inverse of speed squared. 
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2.5 Empirical Results 

2.5.1 Welfare losses of motor-vehicle travelers   

To estimate the marginal external cost of congestion through travel time losses of motor-vehicle 

travelers, we first estimate the effect of motor-vehicle density on travel time of motor-vehicle travelers. 

In column 1 of Table 2.4, we provide the results assuming a linear effect of density on log travel time 

(see (12)). We find that a marginal increase in density (one vehicle per kilometer) increases log travel 

time by 0.024. Hence, increasing density (per lane) by one vehicle increases travel time by 

approximately 2 percent. When we estimate the same model with 2SLS using the share of available 

public transit as an instrument, we find a smaller effect of 0.020 see column 2 (the instrument is strong, 

with an F value above 100). This implies that the OLS estimates provide a non-negligible upward bias 

of almost 20 percent, as anticipated in Section 2.3. 

To examine whether the above specification is restrictive, we also include a quadratic term of 

density in the estimation for column 3. As is suggested by the negligible increase in the R2, a quadratic 

approach does not fundamentally change the results. When we account for endogeneity of density 

given the quadratic specification, by applying a control-function approach (column 4), we again find a 

smaller effect of density implying that OLS provides an upward bias.  

 

Table 2.4 – Log travel time 

 (1) (2) (3) (4) 
 OLS IV OLS IV 

Density 0.0238*** 0.0202*** 0.0268*** 0.0177*** 
 (0.000101) (0.000959) (0.000388) (0.000719) 
Density2    -0.0000425*** -0.0000653*** 

  (0.00000631) (0.00000241) 

Number of Obs. 422,691 422,691 422,691 422,691 
R2 0.925  0.925   

Note: The dependent variable is logarithm of travel time. Weather and time controls in equation (2.11) are included but not 
tabulated. The hourly strike intensity is the instrument for IV. Robust standard errors clustered by hour-of-day in parentheses. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

We then re-estimate the linear specifications for each road separately, allowing the effect of 

density to be road specific. This approach is preferable, because the travel-time density relationship 

may depend on road characteristics such as maximum speed limit, distance to upstream bottlenecks 

etc. These road-specific estimates are available upon request. Table 2.5 reports the average results. In 

the OLS specification, for each road, the effect is positive, with an average effect of 0.024 (see Table 
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2.5). Note that the standard deviation of this effect is about 0.01, supporting the idea that the 

estimated effects differ between roads.  

 

Table 2.5 – Log travel time, road-specific estimates of density 

 (1) (2) 
 OLS IV 

Average effect of 
density 

0.0224 0.0181 

Standard deviation of 
effect of density 

(0.00934) (0.0110) 

Number of Obs. 422,691 321,687 
Note: We estimate the marginal effect for each road separately given controls and then report the average as well as the 
standard deviation of the effect of density. 

 

Concerning the IV specification, we have examined the instrument’s strength for each road 

separately. For all but five roads (i.e. about ninety percent of the roads in our sample), the F-test far 

exceeds the recommended value of 10.64 The estimated effect of density is positive for 25 among the 

28 remaining roads, whereas it is negative for three. This finding is, in our view, not particularly 

worrying for a number of reasons. First, because we have a large number of estimates, random 

variation is likely to result in a few estimates with the wrong sign. Second, the F test for weak 

instruments of these three roads is substantially lower than for the other roads that generate positive 

effects, which is unlikely to be accidental. Third, the OLS estimates of these three roads indicate small 

positive effects. Finally, the logic of our instrument, i.e. strikes do not directly influence travel time of 

motor vehicles, may not hold for a few roads because the ratio of buses to cars is much higher than for 

the average road (recall that this ratio is about 1 percent). 

The second column of Table 2.5 reports the IV results for the 25 roads with the positive 

coefficient and a strong instrument. We find that the average effect of density is about 0.018 (including 

those with a negative coefficient reduces the average estimate to 0.015). Again, the OLS estimates are 

severely upward biased, by about 30 percent.65 This upward bias is also statistically significant for most 

                                                           
64 See the discussion in Wooldridge (2002, page 105). For the roads where the instrument is weak, the test is equal to 1, 2, 4, 
6, and 8 respectively. For these five roads, the Hausman t-test (Wooldridge, 2002, page 120) is less than two (in absolute 
value) suggesting that the OLS and IV estimates are statistically equivalent. 
65 This conclusion holds even more if we include all 33 roads. The IV effect is then about 33% lower.  
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roads: for 20 of the 25 roads, the Hausman t-test exceeds two (in absolute value). As discussed in 

Section 2.3, measurement error in travel time is most likely one of the main reasons for this bias.66 

We use the IV estimates to predict each road’s supply curve – i.e. the travel-time flow 

relationship – as explained in Section 2.1. Figure 2.11 provides an example of such prediction for one 

road. The predicted travel-time flow relationship is backward-bending, in line with empirical traffic 

studies (Helbing, 2001; Geroliminis and Daganzo, 2008).67  

Based on these estimates, we calculate when hypercongestion occurs on the roads we observe. 

Given our specification that 𝑇 = 𝛽𝑒𝛼𝐷, hypercongestion occurs when D > 1/α, where α is the estimated 

effect of density on log travel time (see expression (2.3) above). Our estimates imply that 

hypercongestion occurs in about 2 percent of the time, on average. Given our observation (see Section 

2.4.4) that roads are about 5 percent of the time heavily congested, it turns out that about 40 percent 

of roads that are heavily congested are also hypercongested. During the morning peak hours, however, 

the proportion of hypercongested roads is higher: about 60 percent of heavily congested roads are 

hypercongested (see Figure 2.A11).   

 

Figure 2.11– Deadweight loss avoided when moving from congested (left panel)  

 

 

                                                           
66 Our finding of an upward bias of about 30 percent is consistent with a lognormal distributed measurement error in travel 
time with a standard deviation equal to 10 percent of the standard deviation of log travel time. 
67 These results are also in line with simulation studies (e.g., May et al., 2000; Mayeres and Proost 2001; Newbery and Santos, 
2002). 



2.5   Empirical Results 

29 
 

Table 2.6 summarizes the main results of this section.68 The first column reports the main 

measures describing the observed traffic conditions. These are averages over all road-hour pairs in our 

sample and include the MEC (computed only for the hours where roads are not hypercongested). This 

measure is useful for defining policies to make small incremental reductions in traffic. It shows that the 

marginal external time cost of a motor-vehicle travelling one km is about 0.53 minutes on average.69 

Assuming a value of time equal to 15.59€/h,70 this external cost is €0.137 (0.53*15.59€/60).  

We now describe how we compute the welfare losses of congestion. The first step is to 

characterize the demand function for travel. Rather than attempting to estimate this function, we 

assume that travel demand on a given road r is linear, with the following specification: 𝑇 = 𝜏𝑟,ℎ +  𝜑𝐹. 

Observe that demand for all roads has the same, time-invariant, slope 𝜑. We let the intercepts  𝜏𝑟,ℎ  

vary by hour and road. The value of these intercepts can be calculated given the assumption that, on a 

given road-hour pair, the market is in equilibrium. Given 𝜑, T and F, one calculates 𝜏𝑟,ℎ .In the following, 

we consider the case where 𝜑 = 0, i.e. a horizontal inverse demand function, and negatively-slope 

demands with 𝜑 = -0.1, -0.3 or -2. The implied corresponding average demand elasticity are then either 

minus infinity, -1.5, - 0.5 or -0.07. Hence, we consider a rather broad spectrum of demands spanning 

from perfectly elastic to almost perfectly inelastic.  

The next step is to characterize the optimal equilibrium – in terms of density, flow and travel-

time – corresponding to each observed equilibrium (per hour and road).71  To do so, we combine the 

information on demand with an estimate of the road-specific road supply curve using the IV estimates 

in Table 2.5. Optimality requires that marginal benefit equals marginal social cost. Hence, in the optimal 

equilibrium, 𝜏𝑟 +  𝜑 F = 𝑇 + 𝑀𝐸𝐶 must hold. Given 𝑇 = 𝛽𝑒𝛼D, and MEC=αD T /(1 - αD), density can 

be found by numerically solving the following equation: 

                                                           
68 For computational reasons, we perform these calculations based on a 10% random sample of our set of observations. 
69 We report here the weighted average of the marginal external time cost for a road, using the flow per road as weight. The 
ratio between each road’s marginal external cost and private cost (i.e. travel time minus free flow travel time) allows the 
comparison with the power of BRP congestion functions. The ratio of MEC/(value of private delay) is equal to the power of 
the BPR. See Appendix Figure 2.A13 and Small and Verhoef (2007, 76f).  Higher BRP powers correspond with more severe 
congestion, e.g.  the road of Figure 2.8 has a BPR power close to 8. Our computations produce the same ratio and are thus 
validated against widely used powers for this function. 
70 This is the median value of time for car users in Milan, the second-largest city in Italy, reported by Rotaris et al. (2010). We 
did not find a corresponding value for Rome. 
71 When the road supply curve is backward bending, multiple equilibria can occur, as the equilibrium may lay either on the 
congested or the hypercongested part of the road supply curve (see Figure 2.11). However, multiplicity arises only if the 
inverse demand function is steeper than the downward sloping part of the (inverse) road supply function. In our data, for the 
supply function, the implied travel time elasticity with respect to flow given the presence of hypercongestion is about -5, so 
the inverse supply function is very steep in the hypercongested part. Hence, multiplicity appears to be rather unlikely. 
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(14) 𝜏𝑟 +  𝜑 (D/ 𝛽𝑒𝛼D)  = 𝛽𝑒𝛼D  +  αD 𝛽𝑒𝛼D /(1 −  αD) 

Given the value of the optimal density, we calculate the corresponding optimal travel time and flow.  

Finally, we calculate the welfare improvement of inducing a shift from the observed congested 

equilibrium to the optimum. This improvement can be decomposed in two parts: the change in total 

consumer benefits (the area under the inverse demand function and above the equilibrium travel time) 

and the change in total cost for the remaining optimal flow (optimal flow times the difference between 

average time in the optimum and in the equilibrium). Figure 2.11 provides an illustration for a 

downward-sloping demand function, given an initial equilibrium where the road is not hypercongested. 

We refer to Adler et al. (2017) for a calculation of the welfare losses from hypercongestion which are 

at the high end of the marginal external cost. 

In Table 2.6 (columns 2 to 5) we report the results for different values of 𝜑. On top of the 

quantities describing traffic conditions in the optimum (rows 1 to 3), we report the marginal external 

(time) costs of one additional motor vehicle-km. We also report the overall welfare gain of a policy 

intervention that eliminates excessive congestion (thereby moving to the optimal equilibrium), 

expressed in vehicle-minutes per kilometer per road lane. Note that these are average values for all 

roads-hour pairs in our sample. We decompose the above welfare gain into the change in consumer 

benefits and in travel time costs. 

 

Table 2.6 – Welfare changes: observed and optimal equilibria 

 Observed 
 

Optimal 
𝜑=0 

Optimal 
𝜑= - 0.1 

Optimal 
𝜑= - 0.3 

Optimal 
𝜑= - 2 

Density (veh/km-lane) 13.49 6.71 10.38 11.71 13.06 
Flow (veh-km/min-lane) 10.49 6.02 8.91 9.73 10.58 
Travel time (min/km) 1.33 1.20 1.26 1.29 1.31 
Hypercongestion 0.02 0 0 0 0 
MEC (min/km) 0.53 0.18 0.29 0.36 0.49 
Welfare gain (veh-min/km-lane)  1.14 0.68 0.47 0.19 

Note: These are averages for all roads and all hours in our sample. The welfare gains are expressed in vehicle-minutes per 
kilometer of road lane. 

 

For brevity, we discuss the results in detail only for the case where 𝜑 = − 0.1. As shown in 

Table 2.6, density decreases when moving from the observed to the optimal equilibria. The average 

reduction in density is substantial: from 13.49 to 10.38 vehicles per km per road lane (that is, about 25 

percent). Average travel time falls from 1.33 to 1.26 min/km, i.e. about 5 percent. This reduction may 
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seem small, but the drop is very substantial on some roads. For example, for the road depicted in Figure 

2.8, average travel time falls from 0.96 to 0.81 minutes/km, i.e. about 15 percent. In addition, we see 

from Table 6 that the average flow decreases by about 15 percent. The induced welfare gain (per 

minute lane-kilometer) is equal to 1.05 vehicle minutes. This value equals roughly twice the marginal 

external cost as measured in the observed equilibrium, i.e. about €0.26. This welfare gain comes into 

existence because travel time costs fall by 3.68 vehicle minutes, whereas the consumer benefits fall by 

about 2.63 vehicle minutes. Finally, the average MEC computed in the optimum is equal to 0.18 

min/km, i.e. about three times smaller than in the observed equilibria. In monetary terms, the MEC in 

the optimum is equal to €0.046 per km (0.18*15.59€/60).  This value is indicative of the optimal road 

toll. Quite intuitively, it depends on the slope of the demand function: for example, when demand is 

almost perfectly inelastic (𝜑 = − 2) the MEC in the optimum is close to 0.5, i.e. almost equal to the 

average MEC in the observed equilibria. We find similar welfare gains from removing congestion and 

hypercongestion when we assume constant demand curve elasticities instead of linear demand curves 

(see Figure 2.A14 and Table 2.A3 in the Appendix). 

To complete the picture, we show the marginal external cost for the observed in Figure 2.12, 

as well as the welfare gain of optimal policy per hour of the day, when 𝜑 =  − 0.1 in Figure 2.13. Not 

surprisingly, the MEC and the overall welfare gain fluctuate over the day and the welfare gains of 

reducing congestion are much larger during peak hours.  

 

Figure 2.12 – Marginal external cost Figure 2.13 – Welfare gains  

  

 

Taken together, the results of this section indicate that the welfare losses due to road 

congestion in Rome are substantial. However, some discussion of our results is in order. First, although 
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we observe traffic data from many measurement locations that are quite evenly spread across the city, 

our sample may not be entirely representative of the road network in Rome. Second, we have to make 

assumptions on the underlying travel demand function, because our data does not allow us to provide 

a fully-fledged estimation. Third, we estimate road supply curves at the individual road level, and not 

at an area- or network-wide level. Hence, our estimates of the external costs do not account for the 

possibility of avoiding heavily-congested roads by using different links within the road network.72 A 

priori, this possibility has several implications. On the one hand, if individuals can reduce their travel 

time by, say, using secondary roads, we are likely to overestimate the average external costs of 

congestion. On the other hand, in a city like Rome, it is unclear to what extent drivers are able to avoid 

congested primary arteries without having to take substantial detours. In this case, the extra-vehicle 

kilometers may increase the aggregate travel time losses, implying that we are somewhat 

underestimating these costs. 

 

2.5.2  Travel time losses of bus travelers 

We now estimate the external cost of congestion of private motor vehicles on bus travelers. We start 

with the approach based on (2.9). This expression states that the ratio of the marginal external time 

cost to bus travelers and to motor-vehicle travelers equals  𝜃−1𝑁𝑃𝑇/𝐹 , where  𝑁𝑃𝑇/𝐹 is the number 

of bus travelers relative to the flow of motor-vehicle travelers, which is roughly 0.4 in Rome73, and 

where 𝜃−1denotes the marginal effect of motor vehicle travel time on bus travel time. We estimate 

𝜃−1 by regressing bus travel time on motor vehicle travel time. The first column of Table 7 reports the 

estimate of a bivariate model. In the second column, we control for hour of the day, bus-schedule day 

and year. Given controls, we find that 𝜃−1 equals roughly two, so substantially higher than one, with a 

standard error of 0.1. Hence,  𝑁𝑃𝑇/(𝜃𝐹) is equal to about 0.80. To give an idea of the implied order of 

magnitudes, let us assume that the value of time of bus vehicle travelers is 60 percent of that of private 

motor-vehicle travelers.74 Then the marginal external cost to bus travelers is in the order of 40 to 50 

                                                           
72 Akbar and Duranton (2016) provide citywide estimates of supply and demand functions for Bogota’, using information from 
travel surveys and Google Maps.  
73 According to data provided by the city of Rome (PGTU, 2014), the average occupancy of buses is 42 passengers per veh-km. 
Given the average hourly motor-vehicle flow of about 600 and occupancy of 1.3, this value implies a flow of about seven buses 
per hour per road (0.4*600*1.3/42). 
74 Focusing on the city of Milan, Rotaris et al. (2010) report a median value of time of €9.54/h for bus travelers and €15.59/h 
for car travelers. 
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percent of the marginal external cost to motor-vehicle travelers. Consequently, the marginal external 

cost to bus travelers is quite large. 

 

Table 2.7 – Bus travel time and motor-vehicle travel time  

 (1) (2) (3) (4) (5) (6) 
 Bus 

travel 
time 

Bus 
travel 
time 

Bus travel 
time (log) 

Bus travel 
time (log) 

Motor-vehicle 
travel time 

(log) 

Motor-vehicle 
travel time 

(log) 

Motor-
veh. travel 
time 

2.792*** 1.996***     

 (0.106) (0.108)     
Density   0.0242*** 0.0188*** 0.0153*** 0.0169*** 
   (0.000621) (0.000896) (0.000360) (0.000486) 
Controls No  Yes No Yes No Yes 

N 380 380 380 380 380 380 
R2 0.646 0.941 0.818 0.965 0.859 0.955 

The dependent variable is bus travel time in min/km. Standard errors are robust. We control for hour, bus-schedule day and 
year. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

We also estimate the time losses to bus users via an alternative approach, based on (2.10). This 

approach uses estimates of the marginal effect of motor-vehicle density on log bus travel time, σ, using 

the aggregated bus schedule times. Recall that we have 380 observations. We find that this marginal 

effect, given controls, is about 0.0188, see column 3 of Table 2.7. To examine whether this effect 

depends on the selection of the data, we have also estimated the effect of density on the log of motor-

vehicle travel time, α. Given controls, we find that the effect of density on log bus travel time is slightly 

higher than the effect on log motor-vehicle travel time when using the same aggregated data (column 

4), so if we assume that σ =α, we obtain a conservative estimate.75 Given that, on average, in-bus travel 

time (i.e. excluding time for boarding at bus stops), 𝑇𝑃𝑇, is about twice the motor-vehicle travel time, 

T, it appears that the marginal external effect of a motor-vehicle traveler through longer travel times 

of bus travelers is at least half of its effect through longer motor-vehicle travel times, according to 

(2.10).76 Hence, our alternative approaches provide similar results. The marginal external cost through 

                                                           
75 This effect is somewhat smaller than the effect presented in column (1) of Table 2.4, which uses less aggregated data. The 
downward bias of the estimates shown in Table 7 is to be expected, since aggregation is rather substantial which usually 
results in a downward bias. 
76 This result supports the simulation study of Basso and Silva (2014), which concludes that the marginal contribution of transit 
subsidies to welfare is much lower than that of reductions in road congestion through road tolls or separating bus lanes. 
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travel time delays of bus users is about 0.05€/veh-km, i.e. roughly 30% of the overall marginal external 

cost (0.137+0.05 = 0.187€/veh-km).  

 

2.5.3 The congestion relief benefit of public transit 

We now turn to the congestion-relief benefit of transit. We first estimate the effect of public transit 

share on hourly vehicle flow and travel time.77 We include controls for location, weather conditions 

and hour of the weekday, week of the year and month of the year.78 These controls capture unobserved 

factors that affect traffic conditions and may be correlated with strikes. For example, unions may prefer 

to strike on certain days of the week to maximize the impact of their action. We also control for days 

with cancelled strikes. 

 
Table 2.8 – Vehicle flow and public transit share 

 All roads  
(33) 

Heavily 
congested (10) 

One-lane  
(12) 

Arterial roads  
(7) 

Morning peak: Public 
transit share 

-1.07 
(0.20) 

*** -0.32 
(0.27) 

 -1.39 
(0.20) 

*** -0.49 
(0.36) 

 

Afternoon peak: 
Public transit share 

-0.83 
(0.12) 

*** -0.85 
(0.17) 

*** -1.10 
(0.15) 

*** -0.79 
(0.25) 

*** 

Off-peak: Public 
transit share 

-0.76 
(0.07) 

*** 0.86 
(0.09) 

*** -0.84 
(0.07) 

*** -0.80 
(0.13) 

*** 

         
Controls     
Location Yes Yes Yes Yes 
Hour-of-weekday Yes Yes Yes Yes 
Month Yes Yes Yes Yes 
Week-of-year Yes Yes Yes Yes 
Weather Yes Yes Yes Yes 

Observations 422,691 117,790 158,427 81,981 
R2 0.8354 0.8578 0.7141 0.8681 

Note: The dependent variable is flow expressed in veh/min/lane. Standard errors (in parenthesis) robust and clustered by 
hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in column titles indicates the 
number of roads.  

 

Our main interest is in the effect of public transit supply on travel time. However, starting from 

the analysis of the effect on traffic flow (Table 2.8) facilitates the interpretation, because 

                                                           
77 In the analysis of vehicle flow, we estimate weighted regressions, with weights proportional to the number of lanes. In the 
analysis of travel time, we estimate weighted regressions with weights proportional to the hourly flow. 
78 Hence, we include a dummy for each month in our dataset, interactions between week and year (169 dummies) and 
between hour and weekday (120 dummies).  
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hypercongestion might diminish the effect of strikes on flow (as flow might increase when public transit 

supply reduces hypercongestion). We distinguish between the effects of public transit share during the 

morning peak, the afternoon peak and off-peak. We report the estimation for the entire sample 

(column 1), as well as for heavily-congested roads (column 2), for one-lane roads (column 3) and for 

large arterial roads (column 4).  In the morning peak, provision of transit services decreases traffic flow 

on average by 1 vehicle per minute (first row of Table 2.8). That is, about 9.6% of the average flow.79 

The point estimates of the effects of public transit share are somewhat smaller during the afternoon 

peak and outside peak hours. In line with the idea that public transit can have both a positive effect on 

flow (by removing hypercongestion) and a negative effect (by removing congestion), the effect of public 

transit on flow in heavily-congested roads is statistically insignificant (Anderson, 2014, Small and 

Verhoef, 2007).80 

Table 2.9 reports the results of the estimation of the effect of transit supply on travel time, 

estimating (14).81 We find that public transit provision reduces travel time in peak morning hours by 

0.245 minutes per km. The effect is substantially smaller during the evening peak (0.095) and off peak 

(0.065 min/km) in line with Figure 2.5. These are our main estimates that we will later use in the welfare 

analysis of Section 2.5.3. These estimates are significantly larger than the implied estimate used by 

Parry and Small (2009). However, although the effect is substantial, the estimate is smaller than that 

reported by Bauernschuster et al. (2016) and Adler and Van Ommeren (2016) for inner cities. There are 

at least two explanations for this finding. First, contrary to both studies, the effect we estimate relates 

to motor vehicles, i.e. cars and motorbikes. It is reasonable to assume that the effect of congestion on 

motorbikes is less pronounced. Because the latter have a peculiarly large modal share in Rome, the 

effect on motor vehicle travel time is most likely larger than the estimates reported in the table. A 

second explanation is the relatively low speed and high occupancy of buses, which provide most of the 

transit services in Rome. Therefore, public transit in Rome is a relatively unattractive alternative for 

travelers, suggesting that supply shocks due to strikes are likely to have a smaller effect on modal choice 

than in other cities. 

                                                           
79 We find similar effects when estimating the same model using log of flow as dependent variable (see appendix). This result 
is also in line with estimates for Rotterdam (Adler and Van Ommeren, 2016). 
80 We have excluded observations at night. During the night time, travel times and flows are essentially identical on strike and 
non-strike days, which can be interpreted as a placebo test of strike exogeneity (see Anderson, 2014).  
81 We have estimated the same model using the logarithm of speed as the dependent variable. The results are very similar. In 
the literature, it is common to use travel time because welfare effects of congestion are defined by travel time losses.  
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Table 2.9 – Travel time and public transit share 

 All roads  
(33) 

Heavily 
congested (10) 

One-lane  
(12) 

Arterial roads  
(7) 

Morning peak: Public 
transit share 

-0.245 
(0.036) 

*** -0.525 
(0.079) 

*** -0.136 
(0.027) 

*** -0.370 
(0.074) 

*** 

Afternoon peak: Public 
transit share 

-0.095 
(0.021) 

*** -0.178 
(0.041) 

*** -0.041 
(0.017) 

** -0.076 
(0.035) 

** 

Off-peak: Public 
transit share 

-0.065 
(0.010) 

*** -0.115 
(0.021) 

*** -0.042 
(0.008) 

*** -0.054 
(0.018) 

*** 

         
Controls as in Table 8 Yes Yes Yes Yes 

Observations 422,691 117,790 158,427 81,981 
R2 0.5865 0.5291 0.8276 0.1656 

Note: The dependent variable is travel time, measured in min/km. Standard errors (in parenthesis) robust and clustered by 
hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in column titles indicates number 
of roads.  

 

The effect of public transit share on travel time on heavily-congested roads is substantially 

larger than on the average road, particularly during the morning peak, where the point estimate is 

equal to -0.524 min/km (see column 2). Hence, increased demand for car travel when public transit 

supply is reduced produces strong increases in travel time on roads that are prone to hypercongestion 

(as there is little evidence of higher flows, see Table 2.3). By comparison, the travel time reductions on 

arterial roads, and in particular one-lane roads (column 4), are systematically lower than on the most 

heavily congested roads. Nevertheless, the effect of public transit in one-lane roads during morning 

peaks is still substantial in magnitude (- 0.136 min/km, column 3).  

These results are important, providing support to the main idea of Anderson (2014): the 

congestion relief benefit of public transit is much larger on congested roads, so studies that aim to 

estimate the effect of public transit on travel time employing a representative set of motor-vehicle 

travelers will strongly underestimate the economic benefit of public transit when it is supplied in 

heavily-congested areas.  

Another way to demonstrate the importance of public transit during (morning) peak hours is 

to estimate hour-of-the-day specific effects of public transit share on travel time as well as flow. As 

shown in Figures 2.14 and 2.15, the negative effect of public transit share on travel time is particularly 

strong during peak hours, but the effect on traffic flow is (almost) absent during these hours, again 

consistently with the importance of hypercongestion. 
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Figure 2.14 – Travel time Figure 2.15 – Flow 

 

 

We have also estimated models where we regress the presence of hypercongestion – as 

defined by our estimates in section 5.1.1 – on the public transit share using the same controls as in 

Table 2.8. We find that the effect is negative and equal to - 0.038. Given that, on average, a road in our 

sample is hypercongested about 2% of the time, this result suggests that removing the current supply 

of public transit would almost triple the pervasiveness of hypercongestion (to about 6% of the time per 

road). 

Taken together, these results imply that the beneficial effect of public transit supply on road 

congestion in Rome is far from negligible. Disruptions in public transit service during strikes produce 

positive demand shocks for motor-vehicle travel, particularly during the morning peak when 

hypercongestion is more likely to be present. As a result, travel time substantially increases suggesting 

a relevant congestion relief benefit of public transit.  

Note that the previous estimates provide a measure of the average congestion-relief benefit 

of public transit. However, to investigate the marginal congestion relief benefit, it is relevant to know 

whether the derived marginal effect is constant, i.e. to what extent the effect of public transit on travel 

time is linear. To investigate this issue, we have estimated several nonlinear models, which all suggest 

nonlinear effects, where the marginal effect is more pronounced for shares between 0.4 and 0.8 than 

between 0.8 and 1. However, statistical tests indicate that we cannot reject the linear specification 

hypothesis, i.e. that the marginal effect of public transit on travel time is constant.82 We come to the 

                                                           
82 We have few observations with public transit shares that are either between 0.75 and 1 or less than 0.3, so the power of 
this test is low. 
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same conclusion when we focus on the effect of public transport on flow. We present here the results 

using a fifth-order polynomial of the public transit in Figures 2.16 and 2.17. 

 

Figure 2.16 – Travel time Figure 2.17 – Flow 

 
 

A possible criticism of the above analysis is that we use exogenous variation in the public transit 

share rather than exogenous variation in the public transit level. Note that we control for the scheduled 

service level by including hour of the day dummies. Furthermore, note that the scheduled service level 

is constant, with a supply about 1800 buses, between 9 a.m. and 5 p.m. Hence, we have re-estimated 

the model for observations during these hours (177450 observations). We find that then the standard 

errors are somewhat higher, but the results hardly change. For example, the estimated effect during 

peak hours is now -0.270 (with a standard error of 0.054), very close to the original estimate. Given this 

estimate, it appears that the marginal effect of a single bus during one peak morning hour on motor 

vehicles’ travel time is about -0.00015 minutes per kilometer (-0.27/1800). 

Finally, a reduction in public transit supply can be regarded as an implicit increase in the 

generalized price of public transit travel. In this perspective, one can compare the effect to changes in 

the fare. In our data, we observe one substantial fare increase (by 50 percent), taking place in May 

2012. We have investigated the effect of this price increase on motor vehicle travel time as a robustness 

check. Our results indicate that an increase in public transit prices by 50 percent increases motor-

vehicle travel times by about 0.05 minutes per kilometer. The size of this effect is similar to a 20 percent 

reduction in public transit supply, which seems a reasonable result (see Appendix B for details). 
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2.6 The long-run congestion relief benefit of public transit for Rome 

We now use the above estimates to quantify the overall congestion-relief benefit of public transit in 

Rome. According to our results, the marginal effect of public transit supply on road traffic is 

approximately constant. Hence, the short-run effect of a full shutdown of public transit services 

(consisting of 201 million vehicle-kms per year) results, on average, in 57 additional motor vehicles per 

hour per road lane during the peak and 45 additional vehicles off peak (see Table 8). Furthermore, using 

the results of Table 2.9, it results in a 0.17 min/km increase in travel time in peak hours (averaging for 

morning and afternoon), and 0.065 min/km off peak. The (forgone) annual congestion relief benefit to 

motor-vehicle travelers is then about 38 million hours of travel time. Assuming that the value of time 

is 15.59 €/h, this benefit is valued at roughly €595 million.83 This is equivalent to about 38% of the total 

public transport operating cost (1.56 billion euros in 2013), and about 30% of the total external costs 

of congestion. Note that these values do not include the welfare losses of transit users. We summarize 

these findings in the first column of Table 2.10.  

 Based on the above estimates, we also consider the effect a 1% shutdown in public transit 

provision. This decrease costs €5.95 million in lost congestion relief benefits to motor-vehicle travelers 

but also €2.3 million to bus travelers annually.84 The total loss due to extra congestion is thus 8.25 

million euros annually, i.e. roughly 54 percent of the operating cost savings for the transit agency. We 

report these results in the second column of Table 2.10. 

Another interesting exercise is to compute the marginal congestion relief benefit of an 

additional bus. On the 33 roads analyzed here, there are about 500,000 motor-vehicle travelers in the 

morning peak who, let’s assume, travel on average 4 km on these roads, which is likely a conservative 

estimate. The marginal reduction in time delay is about 300 minutes per bus. Assuming that the value 

of time is 9.54 Euros per hour, the marginal external benefit of an additional bus during peak hours is 

                                                           
83 We multiply annual passenger-kms by private vehicles (see Table 1) by the estimated travel time increases in peak and off 
peak hours, and by the value of time. We assume that people who switch from private motor vehicles to public transit only 
benefit by half as much as people that already use public transit. Note that this measure does not include the loss of surplus 
to former transit users. 
84 Combining the results of Table 9 mentioned above with the results of Table 7, the effect of a 1% decrease in transit services 
results in excess travel time for buses is 0.0034min/veh-km in peak hours and 0.0013min/veh-km off peak. Table 1 indicates 
that there are 66.7 million veh-kms of bus service in Rome per year in peak hours (average occupancy 51 pax/veh) and 67.7 
million veh-km off peak (34pax/veh). Therefore, we calculate an extra total travel time of 0.192 million extra hours of travel 
time for bus users in peak hours and 0.049 off peak. Assuming the value of time for bus travelers is 9.54 euros/h, we get a 
total annual extra loss of 2.3 million euros. 
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about 48 Euros. Given that there are about four morning peak hours, the external benefit of a bus 

during peak hours is at least 200 Euro per day. 

 

Table 2.10 – Congestion relief benefit of public transport, aggregate calculations 

  
Full shutdown 

Marg. shutdown  
(1% of total veh-km) 

Assumptions    
Annual veh-km, private motor vehicles 14. 5 billion 
Annual veh-km, public transport 201 million 
Travel time increase cars (peak), min/veh-km                 0.17 min/km               0.0017 min/km 
Travel time increase cars (off-peak), min/veh-
km                0.065 min/km               0.00065 min/km 
Travel time increase buses (peak), min/veh-km          0.0034min/veh-km 
Travel time increase buses (off-peak), min/veh-
km          0.0013min/veh-km 
Value of time of car travelers €15.59/h 
Average op. cost public transport, veh-km €7.76/veh-km 
Results    
Public transit congestion relief benefit, year €595 million €8.25 million 
Operating cost saving, year €1.56 billion €15.2 million 
Subsidy reduction €1.03 billion €15.2 million 
Net congestion relief benefit (% of cost saving) 38% 54% 

 

An important caveat regarding the interpretation of these results is that they are based on 

short-run estimates, exploiting temporary service disruptions. Hence, one should apply some caution 

when using them to predict long-run effects of (permanent) changes in transit supply. In Rome, car 

ownership is very high and strikes are frequent, suggesting that travelers may respond to them in a way 

that is more similar to a permanent service reduction than in other cities. Thus, our estimates are more 

likely to approximate long-run effects than previous literature using a similar methodology (e.g., 

Anderson, 2014). It is plausible that the main difference between our estimates and long-term 

estimates is the possibility during strikes to cancel trips. Note that individuals who respond to strikes 

by canceling their trip likely have less leeway to do so in the long run and will switch to car use. Hence, 

long-run effects of reductions in supply on road congestion are most likely larger than indicated by our 

current estimates. Nevertheless, we emphasize that we do not capture the very long-run effects of 

transit supply changes, such as job, house and firm relocation, and maybe even the spatial structure of 

cities; hence, we interpret our estimates as only indicative of the long-run effects of changes in transit 

service. 
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2.7 The effect of public transit subsidies given adjustments in public transit supply 

The results of the previous section suggest that the congestion relief benefit of public transport is 

substantial. Although this finding provides some justification for the volume of public transit subsidies 

in Rome, it does not imply that their current level is close to optimal. Subsidies may also have other 

justifications (e.g., economies of scale, environmental externalities) but also produce a price distortion. 

We have ignored these issues up to now. Furthermore, for a proper evaluation of public transit 

subsidies one has to consider possible adjustments in service by the transit agency, in response to 

(subsidy-induced) changes in demand. To provide more insight on whether the current subsidy level is 

justified, we use the model of Parry and Small (2009). In this model, travelers choose between three 

travel modes (private motor-vehicle, bus, rail) and two time periods (peak vs. off-peak), while the 

(welfare-maximizing) public transit agency chooses transit supply and fares subject to a budget 

constraint. This model has been calibrated for several cities (Los Angeles, London, Washington DC), but 

not for Rome. We calibrate its parameters using our empirical estimates and data provided by the city 

of Rome (see Table 2.C1 in Appendix 2.C for details).  

For consistency with our empirical analysis, we slightly adapt Parry and Small’s model as 

follows. First, we assume that motor-vehicle travel time is a function of density.85 Specifically, we 

assume that 𝑇 = 𝛽𝑒𝛼D, with 𝛼 = 0.02 (this is the estimate from Table 4, column 2). Consistently with 

this assumption, we compute the marginal external cost based on MEC as provided in (6). Secondly, we 

include the marginal external cost of motor-vehicle traffic on bus users, using (10), with  
1

𝜃
= 2 (as 

estimated in Table 7, column 2).86 Finally, we calibrate the fare elasticity of transit passenger-kms using 

our own estimates and data provided by the city of Rome. This elasticity is 0.22 (see Appendix B for the 

derivation), which is rather low in comparison to the elasticities assumed by Parry and Small. However, 

given that transit fares in Rome are much smaller than in comparable European cities, low fare elasticity 

seems quite reasonable.87  

                                                           
85 Parry and Small postulate a time-flow relation, whereby travel time is a power function of flow. 
86 We assume that there are on average six buses running on a road per hour and use the average peak and off-peak 
occupancies of 51pax/veh and 34pax/veh respectively, according to data provided by the city of Rome. 
87 Our results do not change substantially when we use the elasticities assumed by Parry and Small. Note also that our data 
suggest an elasticity of private motor vehicle flow to transit fares of 0.1 (see Appendix 2.B). Given that the own price elasticity 
of transit is 0.22, this value is roughly consistent with a modal diversion ratio from cars to transit between 0.4 and 0.5, as 
assumed by Parry and Small. 
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Table 11 reports the results. The top panel reports the marginal external congestion cost per 

motor vehicle kilometer, which equals €0.33/veh-km in peak hours, and €0.13/veh-km during off peak 

(see the first row of Table 11). These costs are the sum of the external costs imposed on motor vehicle 

drivers (€0.21/veh-km in peak hours, €0.09/veh-km off-peak), as well as the external costs imposed on 

bus travelers (€0.12/veh-km in peak hours, €0.04/veh-km off-peak). 

 

Table 2.11 – Parry and Small model for Rome: optimal public transit subsidies 

            Peak Off peak   
Marginal external cost, motor vehicle travel. €/veh-km 0.33 0.13   
   of which: on other motor vehicles travelers 0.21 0.09   
    on bus travelers  0.12 0.04   
            Rail Bus  

       Peak Off- Peak Off-   
        Peak  Peak   
Current subsidy, share of op. cost   0.76 0.76 0.74 0.69   
      Weighted        
Marginal welfare effects    Avg.         
Marginal benefit per €cent/pax-kma  0.10 0.31 -0.07 0.11 0.21   
   marginal cost/price gap -0.24 -0.38 -0.41 -0.34 -0.21   
   net scale economy  0.12 -0.02 0.21 0.04 0.31   
   externality  0.15 0.53 0.14 0.31 0.02   
   other transit  0.08 0.19 0.11 0.10 0.09   

Optimum subsidy, share of op. cost     >0.9 0.72 >0.8 >0.9   

Notes            
a This is the marginal welfare gain from a one cent reduction in the fare, in euros centsper initial passenger-km. 
b The subsidy for each time period and mode is optimized holding the others at their current values. 

 

 

The bottom panel of Table 2.11 reports the marginal change in social welfare resulting from a 

marginal increase in the public transit subsidy (assuming this increase results in a fare reduction), 

starting from the current level. The reported “marginal benefit” is the marginal welfare gain from a 

one-cent-per-km reduction in passenger fare, expressed in cents per initial passenger-km. We 

decompose this effect into four components: (i) a welfare loss due to the increased gap between 

marginal production costs of producing public transit and public transit prices, (ii) a welfaregain due to 

additional economies of scale, (iii) a welfare gain due to a reduction in externalities (congestion and 

motor-vehicle pollution reduction) and (iv) the welfare benefit of diverting passengers from other 

transit modes for which the marginal social cost per passenger-km exceeds the fare. The marginal social 

benefit of a fare reduction is positive for rail and bus services, except for off-peak rail. The average 

marginal social benefit is equal to 0.1. This finding suggests that, despite their already substantial level, 
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increasing transit subsidies is welfare improving. On average, an additional cent of subsidy brings 

roughly 0.15 cents of externality-relief benefit, and 0.12 cents in scale economies.88 In addition, we find 

that in the optimum – in the absence of road pricing – subsidies should cover at least 72% of operating 

costs (bottom row in Table 211). 

 

2.8 Conclusion 

We estimate the marginal external cost of road congestion allowing for hypercongestion, i.e. when the 

road supply curve is backward bending. We use variation in public transit strikes to account for 

endogeneity issues from measurement error in density and travel time as well as potential omitted 

variables. We use the same quasi-experimental approach to estimate the effect of public transit supply 

on road congestion. We demonstrate that, for the city of Rome, the marginal external cost is 

substantial: it is, on average, at least as large as half of private time travel cost, while reaching 

considerably higher levels during peak hours. 

Our findings suggest that congestion relief policies bring substantial welfare gains. For the city 

of Rome, when roads are not hypercongested, the marginal external cost of motor vehicle travel is 

€0.17 per kilometer on average, but almost double during peak hours. We found that an increase in 

road congestion which induces a one-minute delay for each motor travel induces a two minutes travel 

time loss for a bus traveler sharing the same road. An intuitive explanation to this is the large share of 

scooters and motorcycles in Rome which can traverse heavily congested road sections faster than 

buses. Moreover, if speed delays are similar for cars and buses then travel time delays are 

disproportionate for bus travelers. About one third of the marginal external cost of road congestion in 

Rome are borne by bus travelers.  

Our findings support a range of alternative policies. For example, the presence of 

hypercongestion suggests that, even if road pricing instruments are available, the use of quantitative 

measures to curb traffic on heavily congested roads (e.g., through adaptive traffic lights) may provide 

some welfare gains (Fosgerau and Small, 2013). Our findings suggest that taking into account the 

                                                           
88 The marginal congestion relief benefit is comparable to the average benefit obtained in the previous section (see Table 
w2.10), though smaller. One reason is that the model of this section assumes that a higher subsidy translates into lower fares, 
which, given the low fare elasticity in Rome, attenuates the congestion relief benefit. By contrast, in Table 2.10 we consider 
the effect of a change in service (veh-kms). Furthermore, the methodology adopted in this section is more comprehensive. 
For example, it takes into account the effects on travel demand that come from both a change in prices and the adjustment 
in public transit supply. 
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shadow cost on road capacity, separate lanes for buses might be a priority in Rome, as road congestion 

has a strong effect on travel time delays of bus (Basso and Silva, 2014; Börjesson et. al, 2016). 

Our results also support policies aiming at reducing road congestion through an increased 

supply of public transit. We find that public transit – which has a modal share of 28% in Rome – reduces 

travel time of motor vehicles by roughly 15 percent in the morning peak, on average. We further show 

that the marginal congestion relief benefit of public transit provision does not vary with the level of 

public transit supply. In light of the significance of the congestion-relief effect, the current level of 

subsidies, which is about 75 percent of the operational costs in Rome, is justified and should possibly 

be even increased. 
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Appendix 2.A1: Figures and Tables 

Figure 2.A1 – Strikes by month Figure 2.A2 – Strikes by weekday  

 

 

Figure 2.A3 –Public transit share by company Figure 2.A4 – Public transit on non-strike day 
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Figure 2.A5 – Rome  

Figure 2.A6 – Public transit service on strike day Figure 2.A7 – Travel time histogram 

  

 
Figure 2.A8 – Vehicle density histogram Figure 2.A9 – Vehicle flow histogram 
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Figure 2.A10 – Vehicle flow by hour of the day Figure 2.A11 – Heavy congestion by hour  
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Figure 2.A12 – Travel time-density Figure 2.A13 – Power of BPR congestion 
functions 

 
 

Table 2.A1 - Logarithm of travel time 

 (1) (2) (3) (4) 
 All roads (33) Heavily 

congested (10) 
One-lane (12) Arterial roads (7) 

Density 0.0238*** 0.0251*** 0.0110*** 0.0290*** 
 (0.000101) (0.000121) (0.000128) (0.000932) 

N 422691 117,790 158,427 81,981 
R2 0.925 0.927 0.945 0.9163 

Note: The dependent variable is the logarithm of travel time. Controls are included but not tabulated. 

 

Table 2.A2 – Public transit effect on motor-vehicle density 

 All roads  
(33) 

Heavily congested 
(10) 

One-lane  
(12) 

Arterial roads  
(7) 

Morning peak: Public 
transit share 

-5.15 
(0.67) 

*** -9.16 
(1.40) 

*** -3.78 
(0.51) 

*** -9.17 
(1.56) 

*** 

Afternoon peak: Public 
transit share 

-2.68 
(0.35) 

*** -4.56 
(0.74) 

*** -2.27 
(0.36) 

*** -2.60 
(0.78) 

*** 

Off-peak: Public transit 
share 

-1.71 
(0.16) 

*** -2.69 
(0.32) 

*** -1.68 
(0.16) 

*** -1.69 
(0.35) 

*** 

         

Observations 422,691 117,790 158,427 81,981 
R2 0.5445 0.4760 0.6814 0.5431 

Note: The dependent variable is density. Weather and time controls are included but not tabulated. Standard errors (in 
parenthesis) are robust and clustered by hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The 
number in parenthesis in column titles indicates the number of roads. 
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Table 2.A3 – Welfare changes: observed and optimal equilibria with constant demand elasticity 

 Observed 
 

Optimal 
𝜓= - 0.1 

Optimal 
𝜓= - 0.3 

Optimal 
𝜓= - 2 

Density (veh/km-lane) 13.84 12.52 11.80 9.54 
Flow (veh-km/min-lane) 10.66 10.12 9.73 8.33 
Travel time (min/km) 1.31 1.30 1.28 1.22 
Hypercongestion 0.02 0 0 0 
MEC (min/km) 0.53 0.06 0.06 0.04 
Welfare gain (veh-min/km-lane)  0.44 0.66 1.24 

Note: These are averages for all roads and all hours in our sample. We assume a constant demand elasticity (𝜓) per hour and 
road. We compute the MEC for times when a road is not hypercongested. The welfare gains are expressed in vehicle-minutes 
per kilometer of road lane. 

 

 Figure 2.A14 – Implied demand elasticities 
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Appendix 2.A2: Sensitivity Analysis of the effect of public transit share on travel time 

We conduct a range of sensitivity analyses to verify the effect of public transit share on travel time to 

various specifications. In column (1), we show results with day fixed effects. Our results appear very 

robust. In column (2), we cluster standard errors by road and week-of-year.89 Standard errors become 

only slightly larger. In column (3), we add additional interaction effects for national strikes and semi-

cancelled strikes as well as a white strike dummy.90 The estimated sizes of these interaction effects are 

very small. For example, during the white strike, travel time increases slightly by 0.032 min/km.  

 

Table 2.A2.2 – Travel time: alternative specifications 

 (1) (2) (3) 
 Travel time Travel time Travel time 

Morning peak: Public transit 
share 

-0.244 
(0.070) 

*** -0.249 
(0.075) 

*** -0.210 
(0.038) 

*** 

Afternoon peak: Public transit 
share 

-0.095 
(0.028) 

*** -0.096 
(0.025) 

*** -0.061 
(0.021) 

*** 

Off-peak: Public transit share 
-0.064 
(0.016) 

*** -0.073 
(0.018) 

*** -0.038 
(0.012) 

*** 

Public transit share × National 
strike 

 
 

  
0.028 

(0.011) 
** 

Public transit share × Semi-
cancelled strike 

 
 

 
 0.029 

(0.013) 
* 

White strike (dummy)  
 

 
 0.032 

(0.014) 
** 

       
Day-fixed effects Yes No No 

Clusters of standard errors Location 
Week-of-year and 

location 
Day 

Observations 422,691 422,619 422,691 
R2  0.5865 0.0005 0.5865 

Note: standard errors are robust and clustered. Significance level are indicated at 1%, ***, 5%, ** and 10%, * 
levels. Includes weather and time controls as in the main analysis. 

 

  

                                                           
89 Two-way clustering is possible because one dimension (measurement location) is much smaller than the other (i.e. week-
of-year) and therefore we can make use of the asymptotic properties necessary for robust standard errors. As an alternative 
it seems useful to cluster standard errors both in terms of location and day, but this reduces the degrees of freedom below 
the value for which one can still estimate standard errors. 
90 During the white strike, a period of two weeks where public transit service was reduced through alternative means of 
striking excludes two strike days that fell into this period. 
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Appendix 2.B: Public transit fares and motor-vehicle demand 

The effect from a change in public transit prices – fares – is another supply side function aspect we 

investigate. Rome`s public transit operator adjusted fare prices on May 25th of 2012, most notably for 

single tickets from €1 to €1.5.91 Fare prices are thought to affect demand for public transit and therefore 

its main alternative, private motor-vehicle use. Annual single ticket sales declined from 2011 to 2013 

by 11% (ATAC 2011; 2013). This suggests that the price elasticity of public transit is -0.22, so public 

transit demand is rather inelastic, in line with Litman (2015). 

The fare increase allows us to estimate the effect of fares on travel time and flow using a 

discontinuity regression approach. We include observations for the year 2012, so we choose a window 

of about six months on both sides of the boundary, and we use the same control variables as in Table 

2.4, while including third-order polynomial time trends before and after the boundary rather than week 

fixed effects. For results, see Table 2.B1.  

 
Table 2.B.1 – Travel time and flow as a function of public transit fare changes 

 Travel time Flow  
 All roads Heavily congested All roads 

Fare increase by 50% 0.048 
(0.013) 

*** 0.116 
(0.026) 

*** 30.8 
(6.9) 

*** 

Time trends before boundary Yes Yes Yes 
Time trends after boundary Yes Yes Yes 
Controls    
Public transit share Yes Yes Yes 
Road fixed effects Yes Yes Yes 
Hour-of-weekday fixed effects 
(120) 

Yes Yes Yes 

Weather Yes Yes Yes 

Observations 113,129 31,654 113,139 
R2 0.7338 0.7239 0.8934 

Note: Time trends refers to 3rd order polynomials of time. Travel time regression is weighted by flow. Flow per lane 
regression is weighted by the number of lanes. Robust standard errors are clustered by hour. Significance levels 
indicated at 1%, ***, 5%, ** and 10%, *. 

 

We find that the fare hike increases flow by 30 vehicles (about 5% of the mean). The cross price 

elasticity of motorized vehicle travel with respect to transit prices is then about 0.10. This estimate is 

similar to long-run effects estimated for other (see Litman, 2015). More importantly the fare increase 

                                                           
91 At the same time the maximum allowed travel time on a single ticket was increased from 75 min to 100 min, so far some 
travelers the price increase was less steep. Fare prices increased for monthly and annual tickets in a similar way.  
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also increased travel time for motor vehicles by 0.048 min/km. The elasticity of motor vehicle travel 

time with respect to public transit fares is then about 0.078. 

 We have investigated the robustness of these results in several ways. In particular, we have 

estimated models controlling for linear trends while reducing the window size around the boundary. 

Given a six-months window (on both sides) but with linear controls, the results are identical. Given a 

five months or four months window the estimates increase to 0.06 and 0.10. Given a three-month 

window, the estimate is again 0.04, and still highly statistically significant.  
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Appendix 2.C: Aggregate model for Rome adapting Parry and Small (2009) 

Table 2.C.1 – Aggregate model, parameters and results  

     Rail   Bus   
     Peak Off- Peak Off- 
          Peak   Peak 
TRANSIT         
Annual passenger kms, millions 1 639 628 3 403 2 304 
Vehicle occupancy (pass-km/veh-km) 160 87 51 34 
Average operating cost, €/veh-km 29 17 10 5 
Avg operating cost, €cents/pass-km 18 20 19 15 
Marginal supply cost, €cents/pass-km 11 12 13 10 
Fare. €cents/pass-km  5 5 5 5 
Subsidy, % of average operating cost 74 76 75 69 
Cost of in-vehicle travel time, €cents/pass-km 13 10 19 12 
Wait cost, €cents/pass-km  2 6 4 11 
Generalized price, €cents/pass-km 25 28 34 40 
Marginal scale economy, €cents/pass-km 1 4 2 7 
Marginal cost of occupancy, €cents/pass-km 2 0 1 0 
Marginal external cost, €cents/pass-km 0.4 0.2 3.5 2.6 
  Marg. congestion cost. €cents/pass-km 0.0 0.0 2.2 1.3 
  Pollution. climate & acc cost. €cents/pass-km 0.0 0.0 0.1 0.2 
  Marginal dwell cost. €cents/pass-km 0.4 0.2 1.3 1.1 
Elasticity of passenger demand wrt fare -0.22 -0.22 -0.22 -0.22 
Fraction of increased transit coming from       
  auto--same period 0.50 0.40 0.50 0.40 
  same transit mode--other period 0.10z 0.10 0.10 0.10 
  other transit mode--same period 0.30 0.30 0.30 0.30 
  increased overall travel demand 0.10 0.20 0.10 0.20 
AUTO    Peak Off-    
       Peak     
Annual passenger-kms, millions 8 623 12 837    
Occupancy   1.41 1.52    
Marginal external cost, €cents/pass-km 21 7    
  Marg. congestion cost. €cents/pass-km 23 8    
  Poll. & acc. less fuel tax. €cents/pass-km -2 -1    
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3 Road supply curve estimation and marginal external 

congestion cost 

 

3.1 Introduction92 

Car congestion is a large problem. Policy makers everywhere are under immense pressure to remedy 

the externalities that arise from road congestion. For example, in Europe, congestion reduces GDP by 

1% annually (Leineman, 2011). For dense urban areas, this problem is even larger. In London one-fifth 

of the workers commute each week an equivalent of one working day (Transport for London, 2010). 

Large economic gains are possible from reducing congestion.  For example, by reducing congestion in 

California by 50%, labor demand, labor earnings and GDP would increase by up to 2% (Karpilow and 

Winston, 2016). 

The ‘fundamental law of road congestion’ implies that road capacity expansion does not 

alleviate the problem of congestion because capacity expansion increases travel demand (almost) one 

to one (Duranton and Turner, 2011). Therefore, congestion pricing is argued to be the best panacea for 

congestion problems (Downs, 1992; Couture et. al, 2016).93 Congestion pricing and other second-best 

policies rely on knowledge of the road supply curve and marginal social cost curve.   

The debate about road supply curves - defined here as the relationship between travel time 

and flow - and optimal road pricing is extensive and unabated. Both, engineers and economists have 

postulated diverse theoretical and empirical models to identify the causal relationship between travel 

demand and congestion costs (Helbing, 2001; Small and Verhoef, 2007, 69ff.). One of the key issues is 

that the ‘fundamental diagram of traffic flow’ which starts from the assumption that density reduces 

time implies that one flow level of cars can be associated with more than one travel time (Haight, 1963). 

Hence, the relationship between travel time and flow is not a function, but a correspondence, and 

                                                           
92 This chapter is based on Adler, M. W.; Koster, H. R. A.; Van Ommeren, J. N. (Mimeo) Road supply curve estimation and 
marginal external congestion cost. We thank the seminar audience at the 2015 European Regional Science Association in 
Lisbon and the German Forum of Regional Science in Innsbruck, 2016, for useful comments. 
93 In most places, public support of first-best congestion pricing is limited. The alternative to first-best pricing are second-best 
pricing options such as public transit provision, parking regulation and bicycle promoting policies that also rely on knowledge 
of the supply curve. Potential future externality reductions from autonomous vehicles are currently speculative (Karpilow and 
Winston, 2016; Ranft et al., 2016; Calvert et al., 2017). 
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cannot be interpreted as a causal effect of flow on time.94 One may distinguish between a ‘congested 

regime’ where travel time increases because travelers restrict each other use of road space and a 

‘hyper-congested regime’ where travel time continues to increase but the number of travelers declines 

because of inefficient ‘production of travel’. The latter is usually a result of travel demand exceeding 

road capacity either because of increased travel during peak hour traffic or because of a (temporary) 

reduction in capacity due to something such as an accident or a downstream bottleneck. Whereas 

‘congestion’ is more frequent than ‘hyper-congestion’, we provide indicative evidence that the latter is 

substantially costlier.  

We are interested in finding the marginal external cost of travel by estimating the marginal 

effect of vehicle flow on travel time in the Dutch city of Rotterdam. The function we estimate is a road 

cost curve, sometimes also referred to as (short-run) road supply curve. With the supply curve, we 

determine the marginal external congestion cost, welfare optimal road use and tolls. 

We obtain a backward-bending road supply curve by estimating travel time as a function of 

vehicle density, as is standard in the engineering literature (and which is a monotonic function). There 

are endogeneity issues from simultaneity and measurement error when estimating travel time as a 

function of density. Simultaneity occurs when drivers reduce their speed because of an increase in 

proximity from other cars and as a result car density increases and vehicle flow might decrease. That 

the measurement error in vehicle flow, vehicle density, speed and travel time are positivity correlated 

with travel demand is well documented in the engineering literature (e.g., Smith et al., 2002; Herrera 

and Bayen, 2007).  To deal with endogeneity we make use of an instrumental variable approach. This 

is common for supply curve estimations in economics but to our knowledge a novelty in the transport 

economics and engineering literature (Angrist and Krueger, 2001).95   

There are several suitable instruments that are exogenous to vehicle travel time (and have a 

high correlation with density). One suitable instrument is bicycle volumes near the roads of interest; a 

highway ring road and an inner-city road. An alternative instrument are hour-of-weekday dummies. 

                                                           
94 The lack of a causal interpretation holds for static models. Static (i.e. stationary-state) models define a direct relationship 
between car flow and car speed but require a number of assumptions, such as a homogenous road, homogenous users and 
constant inflow and outflow. Dynamic congestion models use more realistic assumptions, specifically for flows to vary over 
time but are therefore also more complex (see, for example, Fosgerau and Small, 2012). 
95 In the literature, endogeneity problems are avoided by using the effect of car density instead of flow as the main effect of 
interest (e.g. Else, 1981; Hall, 1996; Helbing, 2001; Rauh, 2010) or travel time as a right-hand side variable (e.g. Keeler and 
Small, 1977). We do not follow the first approach because it makes the welfare interpretation less convincing and do not 
follow the second approach because it minimizes the sum of squared errors for the independent variable instead of the 
dependent variable. 
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The use of this instrument produces results that are statistically not distinguishable from the results 

using bicycle volumes as instrument, and which can be used for locations where other transport modes 

are not available as an instrument (the latter has the disadvantage that it requires additional 

assumptions). 

The methodology we propose has two main advantages. First, we demonstrate that 

instrumentation allows us to estimate an unbiased road supply curve. Hereby, travel time is a 

monotonic function of vehicle density but backward-bending function of vehicle flow. The estimated 

functional form we obtain is in line with theoretical predictions of stationary-state congestion models. 

A second advantage is that it allows us to calculate the optimal toll which depends on the 

marginal external congestion cost. In an earlier work, Keeler and Small (1977) discuss optimal road 

pricing for highways in and around San Francisco and find that tolls should be largest for peak-hours in 

proximity to the city center.96 Indeed, we find somewhat larger optimal road tolls for the town of 

Rotterdam. 

There are two additional minor advantages. In our approach, we account for unobserved 

shocks to road supply, for example from accidents, and obtain costs that are independent of such 

occurrences. Road-side shocks to the supply curve such as accidents and incidents are hard to observe 

and affect flow and travel time simultaneously. Another advantage is the broad applicability both to 

inner city roads and highways. We show that the method is usable both for single measurement points 

and for connected measurement points representative of a trip. In general, we show that it is possible 

to estimate supply curves with readily available time-aggregated (hourly) data from snapshot 

measurement points. Thereby our research supports the formulation of cost-efficient and sensible 

pricing strategies by local authorities.97 Further, we demonstrate that our methodology is also suited 

to data that are aggregated in terms of time and space.  

The paper proceeds as follows. In Section 3.2, we explain the empirical framework. Then we 

introduce the dataset according to descriptive statistics in Section 3.3. Afterwards, in Section 3.4, we 

present the empirical results that are used for a brief welfare analysis in Section 3.5. The last Section 

concludes. 

 

                                                           
96 According to them, the optimal toll during rush hours close to the city is €0.77 per km (in 2017 prices).  
97 One major problem of congestion pricing, taxes and zoning is that it is often ad-hoc and based on trial and error (Small and 
Verhoef, 2007). Our research is based on data that is often already available to decision makers and allows for an a priori 
pricing strategy. 
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3.2 Empirical strategy 

We are interested in estimating the marginal external effect of travel quantity on travel time on a road 

of a given length.98 The inverse of vehicle speed is travel time 𝑇, in minutes per kilometer, which itself 

is an  𝐹, the number vehicles passing a lane per minute, so that 𝑇 ≡ 𝐷/𝐹. With the implicit function 

theorem, we obtain the implied relation of travel time and flow: 
𝑑𝑇

𝑑𝐹
=

𝜕𝑇

𝜕𝐷
𝑇 × (1 −

𝜕𝑇

𝜕𝐷
𝐹)−1 (see Adler 

et al., 2017). We assume that travel time is an increasing convex function density, 𝑇 = Τ(𝐷) where 

𝜕𝑇

𝜕𝐷
> 0 and 

𝜕2𝑇

𝜕2𝐷
> 0.  Let us assume that travel time is an exponential function of density and controls 

𝑋 so that 𝑇 = 𝑒𝛽+𝛼𝐷+𝜃𝑋. This can be rewritten so that the logarithm of travel time at road i, hour t 

depends on density 𝐷𝑖,𝑡, controls 𝑋𝑖,𝑡 and an error term 𝜀𝑖,𝑡, so that: 

 

(3.1) log𝑇𝑖,𝑡 = 𝛽𝑖 + 𝛼𝐷𝑖,𝑡 + 𝜃𝑋𝑖,𝑡 + 𝜀𝑖,𝑡, 

where we aim to estimate the coefficient 𝛼, the effect if density and the intercept 𝛽 which can be 

interpreted as the natural logarithm of free flow travel time. We include the controls: weather variables 

(i.e. wind speed, temperature, precipitation intensity and duration), their squares, hour-of-day fixed 

effects and 365 day-fixed-effects to control for day specific unobservables that may affect road 

supply.99 

Let 𝑓(𝐷𝑖,𝑡) be a flexible function of density: 

(3.2) log𝑇𝑖,𝑡 = 𝛽𝑖 + 𝑓(𝐷𝑖,𝑡) + 𝜃𝑋𝑖,𝑡 + 𝜀𝑖,𝑡. 

In the empirical application, we estimate 𝑓(𝐷𝑖,𝑡) by a second-order polynomial function (which 

we motivate from our descriptive statistics). Before we can estimate equation (3.2) we need to 

acknowledge that density 𝐷𝑖,𝑡 might be endogenous. There are three possible sources from 

endogeneity present; measurement error, reverse causality and omitted variable bias. Error in the 

measurement of flow, density and travel time is a well-documented problem and increases at higher 

levels of these three variables (Bennett et al, 2006). Reverse causality is particularly a problem when 

                                                           
98 As a basis to our empirical strategy, we assume an isotropic road in a stationary steady-state. In the literature there is an 

ongoing debate about whether hypercongestion may provide a stable equilibrium given this setup (Small and Verhoef, 2007). 
Assuming a linear demand function and a homogenous spatial distribution of vehicles, Arnott and Inci (2010) show that there 
is a stable hypercongested equilibrium using the stationary steady-state assumption.  As an alternative without the spatial 
homogeneity assumption, one may assume roads that have bottlenecks (Verhoef, 1999, 2001; Arnott, 2013; Fosgerau and 
Small, 2013). 
99 In our application, it is not possible to include hour-of-weekday fixed effects, because of the high correlation with bicycle 
use and the resulting lack of identifying variation in our instrument. 
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estimating travel time as a function of flow, because reductions in travel time also lead to lower flows. 

Because flow measurements are used to determine density (as direct density measures are not 

available to us), measurement error and reverse causality are also present in our estimation with 

density as independent variable. Furthermore, infrequent and often unrecorded road-side incidents 

such as accidents constitute an omitted variable bias. The instrumentation we propose reduces the bias 

from these endogeneity issues.   

Since density 𝐷𝑖,𝑡 might be endogenous, ordinary least squares estimates might be biased and 

because equation (3.2) is a non-linear model, we cannot use a standard two-stage least squares 

approach that plugs in first-stage fitted values (Blundell and Powell, 2003). Instead, we account for 

endogeneity with a control function approach (see Holly and Sargan, 1982; Blundell and Powell, 2003; 

Yatchew, 2003).100 We use bicycle flow and hour-of-weekday as our instruments 𝑧𝑖,𝑡 which are arguably 

uncorrelated with 𝑇𝑖,𝑡 but correlated with density 𝐷𝑖,𝑡. Bicycle and motor vehicle travel, as derived 

demands, are based on the same motivations such as travel to work, and as such follow a clear pattern 

over the course of the day and week. Hence, motor vehicle density is highly correlated with the time 

and demand for other transport modes that are considered a close alternative. For our estimation 

procedure to return unbiased estimates it is essential to note that in Rotterdam, roads in the inner city 

are not shared between bicycles and cars and that bicycle use at traffic lights does not affect car 

speed.101 Hence, bicycle use cannot affect travel time directly. It is possible that travelers switch from 

car use to bicycle use because of road congestion. This is not a reverse causality problem in our case 

because we measure vehicle density and hence our instrument is valid, given car density. For each 

observation, we use as instrument the mean bicycle flow at hour 𝑡 and weekday (Monday through 

Sunday) of the observation but excluding the bicycle flow of the observation we instrument for.  

                                                           
100 Apart from the reverse causality concern for car flow, the control function estimation technique also conveniently accounts 
for other endogeneity problems: measurement error and omitted variable bias. There is measurement error for car flow at 
the highway through the transformation from actual to virtual induction loop data. Inner city car flow observations also have 
some measurement error, because pneumatic tube measurements perform less well at higher densities. The bicycle flow 
observations also have measurement error for the same reason. For peak densities, flows might be up to 10% larger than 
observed, for a discussion see e.g. Bell and Vibbert (1990). 
101 We can think of alternative instruments for car flow at a hyper-congested location: travel demand from another transport 
mode with large capacity limits (i.e. metro use, number of pedestrians); car flow at an uncongested location. Car flow at an 
uncongested location still might not be exogenous as car inflow could be limited due to lower car outflow at the hyper-
congested location. A potential reason why bicycle use as an instrument might not be exogenous at other locations is that 
traffic lights are often set to accommodate all road uses and thereby affect the flow, capacity and speed of cars. A circumstance 
that can be accounted for by using time of the day as a control variable or in our case the availability of data where traffic 
lights are not in close proximity. 
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A suitable alternative to bicycle flow as an instrument is the use of hour-of-weekday time 

dummies as instruments. These are exogenous given controls. Especially hour-of-day controls and day-

fixed-effects are necessary to ensure that changes in road supply from traffic measures such time 

dependent signaling and the probability of road supply affecting incidents are accounted for. Hour-of-

weekdays are a suitable alternative for locations where high-quality data on an exogenous instrument 

such as bicycle use is not available. 

We use an exogenous shift in demand measured through the instrument to estimate the road 

supply function. In the first-stage, we regress 𝐷𝑖,𝑡 on 𝑧𝑖,𝑡 and 𝑋𝑖,𝑡: 

(3.3) 𝐷𝑖,𝑡 = 𝛷(𝑧𝑖,𝑡) + 𝜗𝑋𝑖,𝑡 + 𝜇 𝑖,𝑡 

Then we insert the residual ι𝑖,𝑡 from equation (3.3) as a control function into equation (3.2), so that: 

(3.4) log𝑇𝑖,𝑡 = 𝛽𝑖 + 𝛼𝐷𝑖,𝑡 + 𝛾𝐷2
𝑖,𝑡 + 𝜃𝑋𝑖,𝑡 + ι𝑖,𝑡 + 𝜀𝑖,𝑡  

We are in particularly interested in the estimates 𝛼 and 𝛾 for the road supply function and marginal 

external costs. Standard errors for the control function are calculated with a bootstrap procedure 

assuming normality and using 1000 bootstrap runs.  

Estimates of the road supply curve are relevant for the calculations of the marginal external 

costs and welfare optimizing road tolls under certain assumptions on demand and in-vehicle time. We 

make four necessary assumptions. Let us assume that we are on an isotropic road with stationary-

steady state congestion.102 For each hourly observation, demand and supply are in equilibrium and the 

linear demand curve shifts only in intercept during the day. Furthermore, in-vehicle travel time 

accounts for all vehicle user travel cost then the cost of travel is the number of travelers multiplied with 

travel time. More informative for welfare considerations than the user costs are the marginal external 

cost, the difference between the time cost to society of a marginal vehicle and the time cost to the user 

of this vehicle. We arrive at the marginal external cost, denoted by 𝑀𝐸𝐶 through total differentiation 

of the social costs and subtracting the average cost T so that: 

(3.5) 𝑀𝐸𝐶 =
𝑑[𝐹𝑇(𝐷)]

𝑑𝐹
− 𝑇  =

𝑑𝑇

𝑑𝐹
𝐹 +  𝑇 − 𝑇 =

𝑑𝑇

𝑑𝐹
𝐹 =

𝜕𝑇

𝜕𝐷
𝐷

1−
𝜕𝑇

𝜕𝐷
𝐹

. 

When the denominator 1 −
𝜕𝑇

𝜕𝐷
𝐹 is positive, the marginal external cost is positive. For hyper-

congested time periods, the denominator is negative, and this must be interpreted that any increase in 

                                                           
102 This is a conservative assumption with lower costs than when assuming bottleneck congestion (Arnott, 2013; Fosgerau and 
Small, 2013). 
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flow constitutes a welfare improvement, see also Adler et al. (2017). From the estimation of a linear 

equation (3.1), where we assume that  𝑇 = 𝛽𝑒𝛼𝐷 then 𝑀𝐸𝐶 = αD 𝑇 /(1 −  αD).103 We determine the 

road supply curve from the function between travel time and vehicle density. The backward-bending 

section of the road supply curve occurs when vehicle flow exceeds the capacity of the road, at a level 

of density we label ‘critical density’. We know that when 1 −
𝜕𝑇

𝜕𝐷
𝐹 = 1 − 𝛼𝐷 = 0, flow is at its 

maximum and with a linear function between travel time and density, ‘critical density’ is: 𝐷̅ =
1

𝛼
. Similar 

for equation (3.4) where 1 −
𝜕𝑇

𝜕𝐷
𝐹 = 1 − 𝛼𝐷 − 2𝛾𝐷2 = 0, we find the critical density 𝐷̅ =

𝛼−√𝛼2+8𝛾

−4𝛾
 

with 𝐷̅ > 0. All observations with a density larger than the critical density, we consider hyper-

congested.  

 

3.3 Data and descriptive statistics 

We have traffic data for Rotterdam. The city has a metropolitan population of about 1.2 million 

inhabitants. About 57% of commuters travel by car, 25% by public transit and 14% by bicycle (De Vries, 

2013). By comparison, car use is higher than in other Dutch cities because more space was allocated to 

roads in the town center during reconstructions following World War 2’s large scale destruction. This 

makes Rotterdam comparable and our results more applicable to cities outside the Netherlands with 

car-oriented infrastructure and higher levels of car use. Furthermore, Rotterdam is suitable to our 

analysis as we have data available for cars and for bicycles at the same time which is important to our 

estimation. 

We make use of hourly information about travel time, vehicle flow and bicycle flow in the inner 

city and on the highway ring road for the year 2011. In the inner city, travel time, vehicle density and 

vehicle flow as well as bicycle flow are measured with pneumatic tubes.104 We focus on (motorized) 

vehicles at one measurement location in the inner city, see Figure 3.A1 in the Appendix. This location 

is an important, two-lane, southbound street named Maastunnel in the city center connecting the city 

through a tunnel beneath the river Maas.105 

                                                           
103 For equation (3.4), the marginal external congestion is (αD 𝑇 + 2𝛾𝐷2T)/(1 −  αD − 2γ𝐷2). 
104 We construct inner city travel time from data of hourly speed intervals that distinguish between 0-31, 31-41, 41-51, 51-57, 
57-61, 61-71, 71-81, 81-91, 91-101, and above 101 km/h. Density is not directly measures but we obtain vehicle density 
through the identity that relates flow, travel time with density: 𝐹 × 𝑇 =D.  
105 We also show the validity of our results for the northbound direction and another location − s’Gravendijkswal – in the 
sensitivity analysis. The number of lanes and lane width determine the short-term supply curve by setting a capacity limit. 
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Table 3.1 – Travel time, car flow and bicycle flow 
 Inner city Highway 

 Travel time (min/km) 
Average  1.31 0.62 
Stand. dev. 0.15 0.14 
Maximum 3.83 4.63 
Minimum 1.16 0.54 

 Vehicle density (vehicles/km) 
Average  12.60 8.69 
Stand. dev. 8.68 7.00 
Maximum 69.94 56.06 
Minimum 0.28 0.20 

 Vehicle flow (vehicles/min/lane) 
Average  9.32 13.45 
Stand. dev. 5.59 9.41 
Maximum 23.74 33.67 
Minimum 0.22 0.33 
  Bicycle flow (bicycles/min/lane) 
Average  1.35 1.93 
Stand. dev. 1.35 1.93 
Maximum 8.15 51.78 
Minimum 0 0.01 

Number obs. 6,112 7,408 

 

Compared to other cities, Rotterdam is not heavily congested. We later estimate that only 0.4% 

of observations in the inner city are hyper-congested. Average travel time in the inner city (1.31 

min/km) shows that for most hours of the day, car users travel at speeds close to the speed limit of 50 

km/h (i.e. 1.20 min/km). See Table 3.1 for descriptive statistics. The maximum travel time for a 

kilometer in the inner city is 3.83 minutes (15.67 km/h) which is rather short.106 

For the highway, we also observe travel time, density and flow recorded with induction loops 

for a 7.6 km stretch of the highway ring road that is Southbound in the eastern part of the city.107 On 

the highway, travel time is 0.62 min/km, only slightly more than the time it takes to travel at the speed 

                                                           
106 For the speed interval 0-31 we assume cars to travel 15 km/h on average, so that when for one hour all cars are in this 
category, the maximum travel time is 4 minutes per kilometer. 
107 For the southbound A16 highway, between the A17 and the A20 intersection, data is per 100m virtual loop for the 7.6km 
in 5-minute intervals. Virtual loop data is based on the induction loops with a maximum distance of 1km. Due to this high 
frequency of loops, the underlying variation is well captured. However, these loops have various problems: e.g. malfunction 
and misreporting. For this reason, the raw data is transformed into 100-meter virtual loop data. Our interest is in the variation 
of speed and flow over a stretch of representative highway network. So, we aggregate over space and time. The aggregation 
allows us to avoid over-interpretation of data accuracy as well as to capture the variation of speeds and travel time over 
distance. We remove 0.7% of observation of outliers above 100 cars/km density. 
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limit of 100 km/h. The faster, three-lane highway has a lower average vehicle density (8.68) but 

somewhat higher vehicle flow (13.38 vehicles/min/lane) than the inner city.108  

For all measurement locations, some observations are missing randomly (e.g. due to 

malfunction and vandalism of measurement equipment) and so we have a varying number of 

observations per road. The number of observations for the inner city is 6,112 out of a potential 8,760 

hours in a year reflecting the fact that malfunctions of pneumatic tubes can only be observed when 

manually serviced every couple of weeks. For the highway, no observations are missing but the 

instrument bicycle use is measured with pneumatic tubes with missing observations and, so we have a 

total of 7,359 observations.  

Bicycles use separate infrastructure from motorized vehicles in Rotterdam.109 So, vehicle flow 

and density are independent of bicycle flow. The two modes usually do not share road space and are 

also measured separately. We have data for 32 one-directional bicycle paths across the city and focus 

on three of these, all crossing the river Maas in proximity to the car measurement points.110 For the 

inner city, we assign the bicycle path that is closest to the location, i.e. in the same tunnel and 

southbound as well. For the highway, because there are no paths in proximity, we assign the average 

of three Southbound bicycle paths that cross the Maas river similar in that respect with the highway. 

The proximity and direction of travel make sure that our instrument bicycle flow is highly correlated 

with the endogenous variable of interest, vehicle density.  

Bicycle flows are less than one-fifth of vehicle flows in Table 3.1. This reflects trip modal split 

of 14% for bicycle use and 57% car use in Rotterdam. The coefficient of variation is larger for bicycle 

use than for car use, suggesting a larger variation of bicycle use over the day. However, correlation 

between hourly car density and bicycle flow is large, above 0.5 (and above 0.8 for flow).111 We observe 

bicycles flow exceeding 8.3 bicycles per minute/lane in 2.7% of observations. Peak hours with car 

congestion correspond to hours with intensive bicycle use. 

                                                           
108 For the inner city we show the histograms of flow, density and travel time in the Appendix, Figures 3.A2-3.A4. The 
histograms of the highways are similar and hence not depicted. 
109 Intersections and traffic lights are shared in Rotterdam by bicycles and cars. However, both are at least 500 meters from 
our observation locations. 
110 There is high correlation between measurement flows and density across measurement points in Rotterdam that has been 
demonstrated for other cities, see, e.g. Geroliminis and Daganzo, 2008. 
111 It is important to note that all bicycle paths exhibit flow maximum values much lower than their maximum capacity, this is 
essential to our claim that these can be regarded as exogenous and representative for travel demand. One-directional bicycles 
lanes of at least 1.5m width have a flow maximum above 2,500 bicyclists an hour, well above the flows that we observe for 
the bicycle paths in Rotterdam (Zhou et. al, 2015). Despite the high correlation, bicycle flow has a noteworthy different 
histogram from vehicle density and flow, see Figure 3.A5. 
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Figure 3.1 – Travel time and flow  Figure 3.2 – Travel time over the day 

 

 

The high correlation between vehicle density and bicycle flow in combination with the 

independence of vehicle travel time from bicycle flow, makes bicycle flow a suitable instrument for our 

estimations later. 

We show the travel time-flow relationships in Figure 3.1. The higher speed limit and the larger 

capacity of the highway in comparison to the inner city are visible. For both roads, we find that higher 

travel times also occur at flows lower than the maximum flow – this relationship is usually stylized in 

the backward-bending cost curve. When comparing the Figure 3.1 with the flow histogram (Figures 

3.A2), notice that larger travel times have a much lower observation density because Rotterdam is 

generally not heavily congested. We are particularly interested in the flows that are associated with 

the largest travel time losses later on. 

 

Figure 3.3 – Inner city: Car flow and bicycle flow Figure 3.4 – Vehicle density and travel time 
  

 



3.4   Estimation results 

65 
 

Travel time has a clear pattern over the hour and day of the week in Figure 3.2. We find longer 

travel times on weekdays and during daytime, especially the evening rush hour. On the highway, there 

is smaller variation in travel times over the day than in the inner city, but for both road types, intra-day 

variation is much smaller than the absolute variation because very long travel times are not frequent.  

The variation in the level of vehicle flow over the day are similar to the variation of bicycle flow; 

see Figure 3.3 for a more detailed view for Wednesday and Thursday. Not surprisingly, especially 

morning and evening peak flows are pronounced.112 Bicycle use has a clear morning peak but a less 

pronounced evening peak flow perhaps because car use is strongly linked to commuting at specific 

hours in the Netherlands. Levels of vehicle density change similarly across the day than bicycle flow and 

vehicle flow, but unlike vehicle flow, vehicle density has a monotonic relationship with travel time, see 

Figure 3.4. Travel time is increasing in density and in particularly so after about 35 vehicles per 

kilometer.113  

 

3.4 Estimation results 

We first estimate the effect of vehicle density on the logarithm of travel time assuming a linear effect. 

When we ignore the endogeneity issue as well as the non-linearity and estimate an ordinary least 

squares (OLS), a one car increase in density per km has a positive effect of up to 1.3% travel time (0.017 

min/km) in in the inner city and of 2.3% (0.014 min/km) for the highway, see column 1 in Table 3.2 and 

3.3.114 

We also provide the results for the (linear) two-step instrumental variable estimation using 

bicycle flow and the hour-of-weekday instruments in columns (2) and (3) respectively. By comparison, 

the travel demand effect on travel times is about one-third smaller for the two-step estimation 

compared to the OLS estimation.115 This downward bias is a result of the measurement error in the 

                                                           
112 The reason why bicycle use is more pronounced than car use at our measurement locations has two reasons, i.e. the lower 
modal share in general and the more equal spread of bicycle use across the network. We also find this correspondence 
between car and bicycle flows in Figure 3.A6. Bicycle flow continues to increase over a large interval of “stable” car flows. This 
is important because bicycle flow is only a valid instrument for car flow if capacity limits are reached for the former and flows 
continue to increase with travel demand unabated for the latter (where the capacity limit is not reached). 
113 There is a positive, concave correlation between vehicle density and the instrument bicycle use, see Figure 3.A6. 
114 For the estimations using flow as an explanatory variable in which we find comparable results in magnitude, see the Tables 
3.A1 and 3.A2 in the Appendix. This similarity in results is expected because hyper-congestion is infrequent. 
115 The size of the bias depends on the size of the endogeneity issue, in other words on the level of congestion. The instrument 
is globally and locally strong, as indicated by the First-stage F-values that are 1089.6 and 2105.2 for column (2) and (3) in Table 
3.2 respectively. The difference between observed density to imputed density increases in density, see Figure 3.A11. 
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right had side variable, recall that density comprises the product of travel time and flow, where the 

latter is incorrectly measured at higher traffic volumes. According to column (3), an additional vehicle 

per km increases travel time by 0.88%, so 0.012 min/km. In other words, an increase in travel time of 

0.16% for each 1% increase in density can be substantial, considering that density is 250% larger at 5pm 

than at 7am. There is however good reason to believe that elasticities estimated around the average 

might not be representative for all congestion levels.  

 

Table 3.2 – Travel time (log) inner city 
 (1) (2) (3) (4) (5) (6) 
 OLS IV IV OLS Control 

function 
Control 
function 

Density 0.0130*** 0.00850*** 0.00876*** -0.00149** -0.002467*** -0.00213*** 
 (0.000534) (0.000435) (0.000351) (0.000847) (0.000363) (0.000358) 
Density2    0.000276*** 0.0002478*** 0.000258*** 
    (0.0000116) (0.0000123) (0.0000114) 
Weather 
controls 

Yes Yes Yes Yes Yes Yes 

Hour fixed 
effects 

Yes Yes Yes Yes Yes Yes 

Day fixed 
effects 

Yes Yes Yes Yes Yes Yes 

Instruments  Bicycle flow Hour-of-
weekday 

 Bicycle flow Hour-of-
weekday 

N 6112 6112 6112 6112 6112 6112 
R2 0.753   0.881   

Note: We include day-fixed effects, wind speed, temperature, precipitation duration and intensity as controls. Robust standard 
errors in parentheses. In column (5) and (6) we obtain standard errors by bootstrap procedure (1000 replications). * p < 0.05, 
** p < 0.01, *** p < 0.001. 

 

For more severe congestion levels, a quadratic specification (see equation 2) allows a larger 

flexibility in the effect of density on travel time which is supported by visual inspection of Figure 3.4 

earlier. We find that for very low levels of density there is no positive (or even a negative) effect on 

travel time. The reason is that at low vehicle flow levels, there is no causal relationship between density 

and travel time. For larger densities and road use, we find a strongly positive effect on travel time, see 

columns 3 and 4.  

On the highway, the road supply curve is similar to the inner city, see column (2) and (3) in 

Table 3.3. A 1% increase in density increases travel time by 0.8% which corresponds however to a much 

smaller increase in travel time (0.005 min/km.) than in the inner city. The road supply curve depends 

on the speed limit as more cars can pass any road segment at higher speeds. With a higher speed limit 
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than the inner city, the highway can accommodate larger flows per lane. However, additional lanes and 

higher speed limit do not result in a proportional increase in capacity, due to on- and off-ramps and 

interaction between traffic (Daganzo et al., 2011). 

 

Table 3.3 – Travel time (log) highway 
 (1) (2) (3) (4) (5) (6) 
 OLS IV IV OLS Control 

function 
Control 
function 

Density 0.0232*** 0.00789*** 0.00864*** -0.00526*** -0.00952*** -0.00876*** 
 (0.000856) (0.000586) (0.000436) (0.00138) (0.0024896) (0.000580) 
Density2    0.000771*** 0.000635*** 0.000731*** 
    (0.0000486) (0.0000751) (0.0000197) 
Weather 
controls 

Yes Yes Yes Yes Yes Yes 

Hour fixed 
effects 

Yes Yes Yes Yes Yes Yes 

Day fixed 
effects 

Yes Yes Yes Yes Yes Yes 

Instruments  Bicycle flow Hour-of-
weekday 

 Bicycle flow Hour-of-
weekday 

N 7408 7408 7408 7408 7408 7408 
R2 0.668   0.794   

Note: We include day-fixed effects, wind speed, temperature, precipitation duration and intensity as controls. Robust standard 
errors in parentheses. In column (5) and (6) we obtain standard errors by bootstrap procedure (1000 replications). * p < 0.05, 
** p < 0.01, *** p < 0.001. 

  

The specification of the estimation matters for the road supply curve. In Figures 3.5 and 3.6, 

we depict the OLS estimates (column (1)), the IV estimates (columns (2) and 3)) and the control 

functions (columns (5) and (6) from Table 3.2 and 3.3). For comparison, we also plot the OLS estimate 

using flow instead of density as the independent variable in equation (3.1). With flow as the 

independent variable, we arrive at a linear and positive function of travel time. Notice that for the inner 

city, the OLS using flow is an overestimate for the congested section and an underestimate for the 

hyper-congested section of the road supply curve when comparing with the control functions. 

The OLS estimates using density are as expected an upper bound and an overestimate due to 

the endogeneity issues, in particular the measurement error in the right-hand side variable density. 

While the curve with this specification in increasing in density we do notice the absence of a backward-

bending section for the hyper-congestion but rather an almost vertical section for lower than the 

observed maximum densities. 
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Figure 3.5 – Road supply curves inner city Figure 3.6 – Road supply curves highway 

 
 

The instrumental variable estimations are above the OLS using flow but below OLS using 

density. Travel time is somewhat increasing in density but the critical value beyond which the hyper-

congested backward-bending section of the road supply curve starts is far outside the range of our data 

and hence we only see the congested section. Both instruments appear to deliver almost identical 

results.  

We show the estimates of the control function using the instruments bicycle flow and hour-of-

weekday in separate estimations. The expected backward-bending section of the road supply curve is 

well captured.116 For the inner city, up to a flow of ten cars per minute, we see essentially no effect on 

travel time. For flows larger than ten vehicles per minute up to a ‘critical density’ of 47.49 vehicles per 

km (or a flow of 24.13 vehicles per minute), we find the congested section of the road supply curve 

where travel time increases both in flow and density. Above the ‘critical density, during hyper-

congestion, travel time continues to increase past 1.97 min/km but flow decreases as through-put and 

production of the road is decreasing. 

 

                                                           
116 We show results of the OLS estimation using equation (2) from column (4) in Table 2 and 3 in the Appendix in Figure A7 for 
the inner city and A8 for the highway. The estimation results are significantly different from the estimations using instrumental 
variable approach. We could use bicycle paths at further away locations as instrument but obtain similar results, see Figure 
A9). 
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Figure 3.7 – Control functions inner city Figure 3.8 – Control functions highway 

 

 

For Rotterdam, hyper-congestion is rare. In the inner city, 36 hours (0.6%) are hyper-congested 

and on the highway 57 observations (0.8%). For both instruments, the control function yield statistically 

indistinguishable results on the 5% significance level, see Figures 3.7 and 3.8. This reassures us of our 

estimates and that there are several instruments that can be used for the estimation of road supply 

curves. These general findings apply to inner city and highway alike. 

 

3.5 Sensitivity analysis 

We extensively check for robustness of our results using the control function approach. Road supply 

curves depend on road characteristics and hence can substantially vary between locations. We 

estimate the road supply curves for three additional locations in the inner city, see Figure 3.9. We have 

another measurement location at the Maastunnel but where traffic is northbound. We notice that the 

backward-bending section of the supply curve is shorter due to rarer instances of severe hyper-

congestion. For an alternative inner city location (i.e. s’Gravendijkwal), with the measurement section 

approximately two kilometers north of the Maastunnel, we find a road supply curve with hyper-

congestion at lower flows and a steeper backward-bending section. Clearly, this road has a lower 

capacity than the inner city location Maastunnel and hyper-congestion is more frequent Northbound 

(3% of observations) but with similar congestion levels for the Southbound direction (0.4%).  

For the highway, we use the average of 76 induction loop measurement locations over 7.6 km 

between highway segment km16.1 and km23.7. When we focus on single measurement locations, at 

km17, km21 km23 on the highway, we find similar road supply curves in the congested sections, but 
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substantial variation in the frequency of the hyper-congested section (see Figure 3.10). This is expected 

as variation in road side characteristics and on- and off-ramps has substantial impact on the supply 

curve. This demonstrates that the use of a combination from various measurement points is to be 

preferred for two reasons. First, minor variation in road supply across location are less of a problem. 

Second, and even more important for the economic analysis, aggregated data allows us to infer about 

the travel time for longer trips or parts of a trip. In other words, the aggregated road supply curve 

informs us about the travel time given demand for a trip along the aggregated road-segments. This 

improves on the paper of Adler et al. (2017) by demonstrating that a road supply curve for connected 

road-segments over a longer distance reflects the road supply curves of the individual road-segments. 

 

Figure 3 9 – Road supply curves inner city Figure 3.10 – Road supply curves highway 

 

 

The methodology we propose is also suitable to less aggregated data. For example, we can 

estimate equation (3.2) for 9.1 million observations of the highway with individual observations by 

100m road segment over the 7.6km and 30-minute observation interval. We find almost identical 

results in the shape of the road supply curve (see Figure 3.A10 in the Appendix). We prefer the main 

result in Table 3.3 of section 3.4 because the instrument and control variables are available per hour 

and because of computational efficiency. In general, we also check the sensitivity of our results to the 

inclusion of night time data and hours that have vehicle density lower than the value ten but find our 

main results to be insensitive. 
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3.6 Welfare implications 

We can estimate the MEC using the instrumental variable approach using (equation 3.5) when we focus 

on the positive MEC and tabulate the results in Table 3.3. In the inner city, the marginal external costs 

are 0.20 min/km per additional vehicle for all hours of the day.117 For weekdays during working hours, 

the costs are almost twice as large (0.36 min/km). On weekdays in the afternoon rush hour, the costs 

are the largest, with four time the average marginal external cost at 0.92 min/km.  

 

Table 3.3 − Marginal external cost in min/km 

 Inner city Highway 

Approach Linear, IV Quadratic, CF Linear, IV Quadratic, CF 

Marginal external cost 0.20 0.18 0.06 0.11 

   Weekdays 7am to 7pm 0.36 0.43 0.12 0.28 

   Weekdays 5pm to 6pm 0.92 1.68 0.28 1.02 

Note: Instrumental Variable approach (IV), control function approach (CF).  

 

It can be argued that the welfare maximizig toll is equivalent to the marginal external cost in 

the optimum.118 For the road toll, we take into account the hourly varation in the number of road users. 

To express the toll in monetary terms, we assume a value of travel time per car of €21 per hour, so 

implicitly €14 per person and hour since average car occupancy is 1.5 persons.119 Our road tolls are 

based on the quadratic control function approach of equation (3.4). We find that tolls vary greatly over 

the course of the day, with the highest toll  in afternoon rush hours. Between 5pm and 6pm, users 

would pay €0.50 per km in inner city and €0.40 per km, see Figures 3.11 and 3.12. The average over the 

course of the day is €0.22 per km in the inner city and €0.16 per km on the highway. 

When we are interested in the optimal road-use equilibrium given a linear, elastic demand 

function and the quadratic supply function estimated in equation (3.4) where: 𝑇 = 𝛽𝑒𝛼𝐷+𝛿𝐷2
. We 

equate an inverse demand function with a time-variant intercept 𝜏𝑟 and a time-invariant slope 𝜑 where 

                                                           
117 We can compare our results to the power of BPR functions in the literature by calculating the ratio between MEC and the 
private time loss (i.e. travel time minus free flow travel time). We find a ratio of 1.7 for the inner city and 1.3 for the highway 
which is lower than for BPR congestion functions with frequent hypercongestion (Small and Verhoef, 2007, 76f). 
118 We assume travel time as the only cost factor and no substitution of trips over time. Without these assumptions our toll is 
an understimate because of the additional external costs such as polllution associated with travel. 
119 Such a high value of time is supported by Peer et al. (2013) which find value between €35/h to €65/h in the Netherlands 
during commuter times. 
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𝑇 = 𝜏𝑟 −  𝜑𝐹 to the marginal cost curve so that: 

(3.6) 𝜏𝑟 −  𝜑 𝐹 = 𝑇 + 𝑀𝐸𝐶 

This can be rewritten using equation 5 as: 

(3.7) 0= 𝜏𝑟 −  𝜑 (
D

T
) − 𝑇 − (𝛼𝐷𝑇 + 𝛿𝐷2𝑇)/(1 − αD − 𝛿𝐷2) 

We optimize for values 𝜑 = [0.2; 1]. The implied corresponding average demand elasticities for the 

inner city are [-1.4;-7.1] since ∂T⁄∂F=-φ F⁄T, and for the highway respectively [-4.3;-21.7] corresponding 

to values in the literature.120  

Let us first consider the case of 𝜑 = 0.2 in the inner city. The average optimal density for the 

inner city is 1.6% lower than the average density. Up to the critical density (50.95), in the congested 

part of the road supply curve, average welfare gains are 0.12 min/km, see Table 3.4. Above the critical 

density, welfare gains from reducing hyper-congestion might be substantially larger than those from 

reducing congestion and always substantially larger than the potential gains in the congested section 

irrespective of the assumed demand elasticity. 

 

Table 3.4 – Welfare analysis with for various demand functions 

 Inner city Highway 

Φ 0.2 1 0.2 1 
Average density (D) 12.60 12.54 8.70 8.70 
Optimal density (Do) 12.49 12.53 8.06 8.47 

Critical density (Dc) 50.95 50.95 28.71 28.71 
Average welfare gain     

Congested: Do>D<Dc 0.12 0.0052 0.26 0.64 

 

There are various forms of first-best road pricing. For example, many large European cities 

make use of Cordon tolls where road pricing is applied to car users entering the city center as in the 

case of Stockholm and London. Our estimate could also be used for Cordon tolling. In case of a Cordon 

toll it would be suitable to price inner city trips on the average vehicle trip length (13km), so around 

€1.56 per trip. Welfare can be improved by investing toll revenues from first-best road pricing into 

second-best policies such as investment into bicycle paths and subsidies to public transit. 

                                                           
120 In an overview study on travel elasticities, Litman (2004) states a short-run elasticity to fuel costs of about -0.2 and for long-
run costs about -1.2. The elasticities to generalized costs including also travel time is -0.5 and -1.0 in the short and -1.0 to -2.0 
in the long-run (Lee, 2000). When we assume a constant demand elasticity for each hour instead of a linear demand function, 
we find comparable results in terms of optimal density and welfare gains to Table 3.4. 
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With a back-of-the-envelope calculation it is possible to determine the additional revenue from 

road pricing using the marginal extrenal welfare costs per vehicle and summary statistics of Rotterdam. 

In the metropolitain region 1.2 million inhabitants conduct 804.000 car trips each weekday with an 

average distance of 13km of which 62% take place in the inner city and 38% on the highway. 

Furthermore, we make the assumption that the road supply curve for the inner city and highway are 

representative and that inhabitants exclusively travel in Rotterdam whereas no travel of Rotterdam 

outsiders takes place inside of Rotterdam.121 This amount to €158,000 per working day and €40 million 

annually.122 

 

Figure 3.11 – Toll inner city weekday Figure 3.12 – Toll highway weekday 

 

 

To what extent these findings have external validity for other cities of the size of Rotterdam 

depends strongly on how representative the here estimated road supply curves are as well as how 

closely the cities match in terms of travel characteristics such as modal split. It is also important to note 

that Rotterdam already has second-best congestion relief policies in place, such as comparably high 

parking fees in the city center, extensive bicycle infrastructure and substantial public transit provision, 

so that welfare losses are lower than in a comparable situation without such measures.123 Since we 

                                                           
121 This is a strong assumption as traffic flows and road supply curves seem to vary somewhat at least for the inner city as 
shown in the sensitivity analysis. However, we base our assumption on the Wardrop principle (1972) where car users optimize 
route choice according to the travel time. Also, Geroliminis and Daganzo (2008) show that there is high correlation between 
travel times at the neighborhood level. We might over-estimate the congestion cost as part of each car trip takes place on 
tertiary roads in neighborhoods where congestion might be less of an issue. 
122 804000*0.62*0.22+804000*0.38*0.16. We assume 252 working days. This is about 20% of subsidies to public transit and 
110% of public bicycle investments.  
123 Parking pricing can serve as an alternative or additional road pricing mechanism (Arnott and Inci, 2006,2010; Van 
Ommeren, 2011; Fosgerau and De Palma, 2013). 
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focus on external welfare losses in travel time we do not account for other external losses from 

congestion such as environmental and accident losses, hence the welfare loss from congestion based 

on travel time is an underestimate.124 

 

3.7  Conclusion 

We estimate the effect of vehicles flow on travel time. Since this effect can backward-bending during 

hours when high demand for car travel exceeds road capacity, we estimate travel time as a function of 

vehicle density. This is a monotonic function and relates through an identity to vehicle flow on travel 

time. However, vehicle flow and density are not necessarily exogenous because of reverse causality 

and measurement error. Therefore, we demonstrate that the use of exogenous, highly correlated 

instruments such as bicycle flow or the hour-of-weekday are suitable to account for endogeneity.  

 We demonstrate that our methodology allows to obtain consistent and unbiased estimates of 

the road supply curve. The method is well suited for inner cities, highways as well as suitable for various 

levels of temporal and spatial data aggregation. Instrumentation and the inclusion of day-fixed effects 

controls substantially reduce the impact of unobservable occurrences such as road works and road 

incidents on our estimates. 

 To capture the infrequent (less than 2% of observations) presence of hyper-congestion in our 

road supply curve, we use a more flexible quadratic specification and a control function approach to 

address endogeneity. This combination yields a supply curve that closely mimics the data and provides 

a functional form in line with the fundamental diagram of traffic and stationary-state congestion 

theory. The quadratic control function is also superior in the precision obtaining the level of vehicle 

flow where congestion transforms into hyper-congestion, i.e. the ‘critical density’. 

We are the first to demonstrate how these unbiased estimates of the road supply curve can be 

used to obtain the marginal external time cost of vehicle travel. We find large variation in patterns of 

marginal external cost between the inner city and the highway and across the hours of the day.  

 We find marginal external congestion costs of 0.16 min/km for the inner city and 0.10 min/km 

for the highway. Marginal external costs can be by a factor ten larger during afternoon rush hours. 

                                                           
124 When fuel costs are €0.10 per kilometer and additional external cost such as pollution about €0.02 then peak external cost 
exceeds the user costs for peak hours. A road supply curve and optimal tolls that are based on behavioral explanations 
supports the idea that congestion cost is more relevant to the travelers than accident and fuel costs (Verhoef and Rouwendal, 
2004; Anas and Lindsey, 2011).  
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Hence, optimal tolls are between 40 to 50 cents during rush hours and 10 to 20 cents over the course 

of the day.
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Appendix 3.A 

Figure 3.A1 – Measurement points Rotterdam 

 

 

Figure 3.A2 – Vehicle flow Figure 3.A3 – Vehicle density 
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Figure 3.A4 – Travel time  Figure 3.A5 – Bicycle flow 

 

 

Figure 3.A6 – Bicycle flow and vehicle density Figure 3.A7 – Road supply and confidence 
interval 

  

 

Figure 3.A8 – Road supply and confidence 
interval 

Figure 3.A9 – Road supply curve 
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Figure 3.A10 – Data aggregation sensitivity  Figure 3.A11 – Imputed and observed density  

 

 

Table 3.A1 – Travel time (log) inner city 
 (1) (2) (3) (4) 
 Linear IV OLS-Quadratic Control 

function 

Flow 0.0076*** 0.0152*** -0.00348*** -0.00131* 
 (0.000409) (0.000696) (0.000839) (0.000536) 
Flow squared   0.000541*** 0.000488 
   (0.0000359) (0.0000241) 

N 6112 6112 6112 6112 
R2 0.45  0.47  

For the controls variables that are included see Table 2. * p < 0.05, ** p < 0.01, *** p < 0.001 
 
 

Table 3.A2 – Travel time (log) highway 

 (1) (2) (3) (4) 
 Linear IV OLS-Quadratic Control 

function 

Flow 0.00153*** 0.00566*** -0.00160* -0.00107* 
 (0.000151) (0.000593) (0.001080) (0.0006012) 
Flow squared   0.0003408*** 0.0002408*** 
   (0.0000198) (0.0000198) 

N 7408 7408 7408 7408 
R2 0.33  0.33  

For the controls variables that are included see Table 2. * p < 0.05, ** p < 0.01, *** p < 0.001 
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4 Does public transit reduce car travel externalities? Quasi-

natural experiments' evidence from transit strikes 

 

4.1 Introduction125 

The provision of public transit is thought to reduce travel time losses and other negative car 

externalities that are due to car congestion. For this reason, it may be economically justified to subsidise 

public transit from a welfare perspective as it creates a congestion-relief benefit.126 Car use and public 

transit use are not perfect substitutes. Hence, subsidies to public transit provision might be interpreted 

as a second-best policy. Public transit provision is not the only alternative for policymakers to address 

negative car externalities. For example, we will provide evidence that bicycling-promoting policies 

might be another cost-effective way to realise congestion-relief benefits. 

The main goal of this paper is to quantify the congestion-relief benefit of public transit for 

Rotterdam by analysing travel time changes due to public transit strikes.127 Arguably, strikes can be 

interpreted as exogenous transit supply shocks and therefore as a quasi-natural experiment as argued 

by a series of studies (Crain and Flynn, 1975; Van Exel and Rietveld, 2001; Aftabuzzaman et al., 2010; 

Marsden and Docherty, 2013). We are aware of two other papers that use a similar idea. Lo and Hall 

(2006) and, more recently, Anderson (2014) analyse the effect of a single transit strike lasting 35 days 

on highway speed for Los Angeles. Anderson (2014) finds a substantial congestion relief benefit of 

public transit provision with a decrease in time delays experienced by car drivers of 0.12 minutes per 

                                                           
125 This chapter is based on Adler, M. W. and Van Ommeren, J. N. (2016). Does public transit reduce car travel externalities? 
Quasi-natural experiments' evidence from transit strikes. Journal of Urban Economics, 92, 106-119. We would like to 
commemorate our colleague Piet Rietveld who was involved in the early stages of this paper but who passed away on 1st of 
November, 2013. This paper is funded by Kennis voor Klimaat. We thank Taoufik Bakri from TNO Delft, Peter Schout from 
Rijkswaterstaat, Jos Streng and Roel Rijthoven from Rotterdam municipality for support in data acquisition and constructive 
remarks. Furthermore, we thank Hugo Silva and seminar audiences of the Amsterdam Tinbergen Institute, Toulouse ITEA 2014 
and St Petersburg ERSA 2014 conference for useful comments. Jos van Ommeren is a fellow of the Tinbergen Institute. 
126 Other reasons for public transit subsidies are that public transit’s average costs are lower than its marginal costs because 
of the presence of fixed costs and the ‘Mohring (1972) effect’. Car congestion is the main externality of car travel in addition 
to air pollution and road accidents.  
127 Up to the 90´s, strikes received a lot of attention in the economics literature, which shows that the majority of strike days 
are public sector strikes. For example, 86% of UK strike days are in this sector (ONS, 2014). In many countries, a large share of 
public sector strikes is with public transit firms. These firms have market power, and are unionized, which are both key strike 
determinants. 
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kilometer traveled.128 It is unknown to what extent this result can be generalised to other cities where 

the share of public transit use is much higher or to cities where bicycle use is a viable alternative.129  

Our analysis differs from Anderson (2014) and Lo and Hall (2006) in a number of ways. First, we 

focus on a city, Rotterdam in the Netherlands, which, as we will document, is only mildly congested. 

Second, we analyse the effect of multiple strikes of various public transit modes (e.g. bus, light rail) that 

are citywide. Third, we examine the strike effect on travel time per kilometer (and flow) for the highway 

ring road and inner city roads. Fourth, we examine to what extent transit strikes induce public transit 

travelers to switch into cycling. The latter is particularly relevant, because, as argued by Basso and Silva 

(2014), public transit subsidies should be evaluated according to other urban policies with a similar aim, 

such as congestion pricing and bicycling-promoting policies. Finally, by examining heterogeneity in the 

effect of strikes, we are able to improve our understanding when the public transit relief benefit is 

particularly pronounced. For example, as one may expect, we find a particularly strong effect during 

rush hours (but no clear effect during weekends and outside rush hours). In addition, our results 

suggest that the travel time effect of strikes that lasts a few hours are similar to that of full-day strikes 

indicating that a continuous supply of public transit during the day is essential for travelers. 

We show that the congestion relief impact for inner city roads is by a factor ten larger than for 

highway ring roads. For the latter we find an effect that is several times smaller than reported by 

Anderson (2014). It turns out that the congestion relief benefit of public transit for Rotterdam is 

substantial and about 80% of the current subsidy to public transit. This suggests that even for cities that 

exhibit mild congestion levels, subsidies to public transit are to a large extent justified by their 

congestion relief benefit alone. 

 

                                                           
128 Lo and Hall (2006) report similar speed reductions of 20% to 40%. However, an earlier strike in the year 2000, not analysed 
by Lo and Hall (2006) and Anderson (2014) seems to decrease speed by only 5% (The Economist, 2000). Parry and Small (2009) 
assume that public transit provision reduces car travel time by 0.04 minutes per kilometer traveled, substantially less than the 
results indicated by Anderson (2014). Similar to Nelson et. al (2007), they conclude that subsidies up to 90% of operating cost 
may be welfare improving. Also Proost and Van Dender (2008) and Basso and Silva (2014) indicate that during peak hours, it 
may be beneficial when subsidies cover at least 50% operating cost. 
129 As is well known, in comparison to Los Angeles, almost all European and Asian cities provide levels of public transit that 
are an order of magnitude higher. Because it is likely that the congestion relief benefit is a concave function of the level of 
transit provision, the marginal benefit might be lower in these cities. 
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4.2 Data and descriptive statistics 

4.2.1 Introduction 

We analyse public transit strikes for the period 2001 to 2011 for Rotterdam, a Dutch city with a 

metropolitan population of about 1.2 million inhabitants. Public transit use is substantial: 21% of 

residents and 25% of commuters use it each day. Car ownership is low: only 57% of adults belong to a 

car-owning household, but the proportion of commuters who travel by car is representative for the 

Netherlands: about half of the Rotterdam commuters travel by car (De Vries, 2013). Average speed for 

an entire commuter car trip is about 30km/h (Savelberg, 2013). As will be documented later on, in 

Rotterdam there is mild car congestion, as average speed within the city, as well as on the highway ring 

road is just below the legal maximum speed limit. Also, as is well known, in the Netherlands, the use of 

the bicycle is quite common. In line with this, the large majority of Rotterdam residents own a bicycle. 

Bicycle use in Rotterdam is low from a Dutch perspective: 14 % of commuters bicycle on a daily basis 

(in Amsterdam this percentage is more than double), but comparable to cities such as Hamburg, Delhi, 

Barcelona, Tokyo and Berlin.130 

Within the Rotterdam metropolitan area there is one public transit operator RET which 

provides inner-city bus, tram, metro and light rail connections. Regional bus connections, between the 

municipality of Rotterdam and other municipalities, are provided by another (private) company.131 

Within Rotterdam, many roads have separate bicycle paths, which allow us to measure bicycle use over 

an extensive period. 

We will analyse hourly information about bicycle flow, car flow and travel time for the inner 

city and about car flow and travel time for the highway ring road (see subsections 4.2.3 and 4.2.4) and 

relate this to the occurrence of strikes (see subsection 4.2.2).132  

 

4.2.2 Strikes 

Information on public transit strikes is obtained from the Rotterdam municipality, the public transit 

operator, newspapers and Internet search. We observe 16 public transit strikes between 2001 and 

                                                           
130 One of the reasons for the low bicycle use in Rotterdam is that it has been rebuilt as a modern (‘American’) city after its 
destruction during the Second World War.  
131 Rail is supplied by a semi-public, national rail operator. 
132 Information on inner city traffic is provided by Rotterdam municipality and on highway traffic by TNO.  
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2011.133 Table 4.1 lists these strikes by mode, type, date, time and additional information, such as 

whether they were announced. We focus on 13 citywide transit strikes, defined as strikes that affect all 

inner-city buses, trams and metro, but also consider two national rail strikes and one regional bus 

strike.134 Regional buses also operate on routes inside the city, but during citywide strikes do not stop 

within the city (in order not to break the strike). 

 

Table 4.1 – Public transit strikes Rotterdam, 2000-2011 

Type Date Time Information 

Citywide strikes  
 Wednesday 08-10-2003 10am to 2pm  

 Thursday 14-10-2004 Full-day Also rail 

 Wednesday 29-06-2005 Full-day  
 Monday 04-09-2006 12am to 1pm No metro strike, 

unannounced  Monday 18-09-2006 8am to 1pm Unannounced 

 Monday 25-09-2006 Full-day  

 Wednesday 15-11-2006 10am to 4pm  No metro strike 

 Wednesday 16-02-2011 Full-day Reduced schedule  

 Tuesday 12-04-2011 9am to 2pm   

 Wednesday 11-05-2011 5am - 9am  Irregular schedule  

 Thursday 09-06-2011 Full-day  

 Wednesday 29-06-2011 9am to 3pm  

 Sunday 20-11-2011 Full-day  

Rail strikes (only) 

 Thursday 21-12-2000 Full-day  

 Friday 17-06-2005 Full-day  

Regional bus strike (only) 

 Tuesday 20-05-

2008 
} 

9am to 4pm, after 

7pm 

 

 Wednesday 21-05-

2008 

 

 Thursday 22-05-

2008 

 

Placebo strikes  

Rail strike Monday  02-04-2001 No strike  Canceled  

Citywide strike Wednesday 06-10-2009 No strike  Canceled  

Citywide strike Sunday 06-11-2011 No strike  Canceled  

 

About half of the citywide strikes last a full day. The other half usually end after four to five hours, 

and will be labeled partial-day strikes. The majority of strikes include rush hours, defined to be between 

                                                           
133 In the three years following 2011 there were no public transit strikes in Rotterdam. 
134 About one third of Dutch train users combine train use with bicycle or car use (van Goeverden and Egeter, 1993, and van 
der Loop, 1997), so a train strike may decrease bicycle and car use for some train travelers. 
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7am-9am and 4pm-6pm on weekdays. All strikes end within 24 hours after commencement except for 

one regional bus strike that involves strike disruptions on three consecutive days. One citywide strike 

(in October 2014) coincides with a national rail strike. Importantly, all strikes, except two, were 

announced (also in national media) well in advance.135  

Three strikes were first announced and later canceled. We will use these canceled strikes as 

placebo strikes. Arguably, if the effect of announcements of strikes on switching travel mode is 

sufficiently small (for which we will provide evidence), then these canceled strikes can indeed be 

interpreted as placebo strikes.136 

 

4.2.3 Inner city traffic 

For the inner city, information on the hourly number of cars on the road and bicycle travelers on bicycle 

paths is collected by pneumatic tubes. We have this information for all directions at 24 locations, 

equally distributed over the city (see Figure 4.A1 in the Appendix).137 For 21 out of 24 locations, there 

is information on either car or bicycle travel. For three locations, two bridges and a tunnel that span 

the river Maas, information on both car and bicycle travel is available.138 In total, we have 36 

measurement directions for bicycle flow on bicycle paths and 16 for car flow (see Table 4.A1 in 

Appendix).139 For two locations, so four directions, we have information on car travel speed. Although 

we have only four independent speed measurements, these can be thought to be representative for 

the speed within the whole city as previous studies indicate that within-city speed observations over 

different locations are strongly correlated (Geroliminis and Daganzo, 2008; Daganzo et al., 2011).140 

                                                           
135 Strike information prior to the strike is not always clear and sometimes even misleading. For example, for the 12th of April 
2011 strike, travelers were warned that services would be gradually reduced starting from 9am but actually service provision 
grinded to a complete halt at this time (Treinreiziger, 2011). 
136 Cancellations occur due to legal challenges and not due to anticipated road conditions. The placebo strike in 2011 was 
canceled a week before, but the other two only hours before. Because we will show that announced and unannounced strikes 
have similar effects, it is reasonable to interpret canceled strikes as placebo strikes. 
137 Most locations have two directions. There are is one location with information on one direction and one location with three 
directions. 
138 The river Maas is a major waterway that divides the city into two parts. The two bridges and tunnel are the only possibility 
to cross within a span of 5km. 
139 Cycling paths are separated traffic lanes designated for bicycle travel. For most paths this includes a small share of 
motorized bicycles and small scooters. Negative measurement error for bicycle flow is present because only one bicycle can 
be recorded every 0.050 seconds. This results in downward bias of 5% to 20% for highly frequented paths (Bell and Vibbert, 
1990). Hence, our estimates of strike effects on bicycle travel may be somewhat biased towards zero. 
140 The idea of bathtub congestion, where travel times increase across a city, like water in a bathtub, is based on the notion 
that within-city speed variation is absent (Arnott, 2013; Fosgerau and Small, 2013).  
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In our analysis, for a causal interpretation of the strike effect, we aim to compare transport 

outcomes on strike days with transport outcomes on similar non-strike days. As can been seen in Table 

1, during certain periods (e.g. the summer) there were no strikes. Although this may be accidental, it is 

also possible that strikes were avoided during certain periods for a certain reason (e.g. public transit 

use is lower during the summer, so a strike may be less desirable according to the strike organizer). 

Hence, we exclude four months (January, March, July and August) and three years without a strike 

(2002, 2007 and 2010).141 Car flow is zero for a few observations and for convenience (as we will use 

logs) these observations will be excluded. We focus on observations between 6am and 8pm (i.e. 14 

hours). In total, we have 88,106 hourly observations of travel time, 338,782 of car flow and 719,661 of 

bicycle flow.  

 

Figure 4.1 – Travel time Figure 4.2 – Car and bicycle flows 
     

 
 

Our measure of travel time, measured as minutes per kilometer, is based on the proportion of 

vehicles that travel at a certain speed (during one hour), observed for 11 speed intervals.142 We 

construct travel time by calculating the average using the mid-speed value and the proportion of cars 

per interval.143 This is potentially problematic, because the lowest interval, below 31 km/h, is quite 

                                                           
141 Including these observations provides almost identical results as discussed in the sensitivity analysis. About 12.2% of 
observations are missing, as, due to malfunction and vandalism pneumatic tubes are occasionally not operating. The 
occurrence of missing observations is independent of the occurrence of strikes and missing observations are excluded from 
the analysis without introducing selection bias. 
142 To be precise, intervals distinguish between 0-31, 31-41, 41-51, 51-57, 57-61, 61-71, 71-81, 81-91, 91-101, and above 101 
km/h.  
143 We construct travel time in minutes per kilometer as the weighted average of the inverse of speed, with weights equal to 
the proportion of cars in a speed category. For a number of cars, speed is unknown. We ignore these observations initially. In 
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large. For this speed interval, we assume cars to drive 15 km/h, but we also make other assumptions 

as discussed in the sensitivity analyses. Hence, travel time is truncated and skewed, see Figure 1, and 

locations with information on travel time have a similar car flow distribution as other locations, see 

Figure 2.  

 

Table 4.2 – Summary statistics inner city traffic 
 Travel time Car flow Bicycle flow 

 Mean SD Obs. Mean SD Obs. Mean SD Obs. 

Full-day citywide strike  1.55 0.66 294 894.1 508.7 854 188.1 249.6 2,212 

 Rush hour 1.88 0.86 68 1,090.0 568.7 212 312.4 234.8 506 

 Non-rush hour 1.45 0.56 226 829.3 470.1 642 151.6 242.1 1,702 

Partial-day citywide strike 1.48 0.53 348 911.0 514.9 992 179.5 163.3 2,605 

 Strike & rush hour 2.00 0.83 12 1165.6 664.5 28 359.6 251.5 83 

 Strike & non-rush hour 1.32 0.17 94 864.6 426.8 270 146.6 128.6 727 

 Non-strike & rush hour 1.70 0.74 88 1,060.5 615.7 256 241.9 188.8 664 

 Non-strike & non-rush hour 1.41 0.42 154 835.9 903.1 438 151.3 138.1 1,127 

Rail strike 1.43 0.46 112 875.4 404.1 363 138.0 89.1 517 

Regional bus strike 1.56 0.35 164 1,011.8 510.6 465 229.2 847.1 1,256 

Placebo strike 1.37 0.35 98 760.9 468.6 363 122.3 121.7 1,201 

Non-strike 1.35 0.35 87,146 774.9 465.5 335,772 118.2 117.0 711,878 

 Rush hour 1.53 0.55 17,828 988.2 557.3 68,545 197.2 150.6 145,525 

 Non-rush hour 1.30 0.26 69,318 720.1 421.8 267,227 97.9 96.8 566,353 

Total 1.35 0.35 88,106 775.9 457.0 338,782 118.9 123.1 719,661 

Note: Hourly observations. Travel time in minutes per kilometer. 

 

Table 2 shows mean car travel time for different strike categories. In line with the idea that 

Rotterdam is a mildly congested city, the mean travel time is 1.35 min/km, close to the time it would 

take at the 50 km/h speed limit, i.e. 1.20 min/km. Note further that when there are no strikes, travel 

time during rush hours (1.53 min/km) is only 15% higher than during non-rush hours (1.30 min/km). 

The table also suggests an effect of strikes: travel time is distinguishably higher during full-day citywide 

strikes (1.55 min/km) in comparison to non-strike hours (1.35 min/km). The difference in travel time is 

about 0.20 min/km, so about 15%. At the same time, car and bicycle flows are substantially larger 

                                                           
the sensitivity analyses, we re-estimate models with the proportion of cars with missing speed data as a control variable. Note 
that by using mid-points we have measurement error in the dependent variable. Because measurement error is likely random, 
this is not of concern.  
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during full-day citywide strikes in comparison to non-strike days. During rush hours of full-day citywide 

strikes, travel time is even 17% higher, on average compared to non-strike days.144 For most strike 

categories, the number of travel time observations is high enough to anticipate reasonably precise 

estimates. For example, for full-day citywide strikes, we have 294 observations about travel time, 854 

about car flow and 2,212 observations for bicycle flow.  

 

Full-day strike 

Figure 4.3a – Travel time Thursdays June 2011   Figure 4.3b – Car flow Thursdays June 2011 

 

Partial-day strike 

Figure 4.4a – Travel time Wednesdays May 2011 Figure 4.4b – Car flow Wednesdays May 2011 

 

 

                                                           
144 For rail and placebo strikes, travel time and flow are similar to non-strike days, suggesting the absence of an effect. For 
strikes with longer travel time and larger flow, standard deviations of travel time tend to be larger (because of the increase in 
travel time variation over the day). 
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A visual examination of how transport outcomes vary over the day on days with and without 

strikes offers further insights which motivate our estimation methodology later on. Here, we compare 

transport outcomes on a particular strike day to transport outcomes on non-strike days on the same 

weekday of the same month of the strike.  

Figures 4.3a and 4.3b show travel time and car flow for a strike on a Thursday, on the 9th of 

June 2011 and for other (non-strike) Thursdays of the same month. During this particular strike, which 

lasted a full day, car flows are larger and travel time is longer for most hours of the day compared to 

other (non-strike) Thursdays that month. A similar result also holds for bicycle flow, see Figure A2 in 

the Appendix. 

Figures 4.4a and 4.4b provide information for a partial-day strike - between 5am and 9am - on 

Wednesday 11th of May 2011 and compare this to all other non-strike Wednesdays in that month. The 

outcomes of this partial strike appear similar to the full-day strike, suggesting that strikes affect travel 

time also outside the strike period. Non-strike flow patterns between Thursdays and Wednesdays (see 

again Figures 3b and 4b) reveal weekday-specific flow patterns. For example, the morning rush hour is 

more pronounced on Wednesdays. It seems therefore important to control for the interaction of the 

week-of-the-day and hour-of-the-day fixed effects in the multivariate analysis. 

 

4.2.4 Highway traffic 

We also make use of highway ring road data between 6am and 8pm for the year 2011 that is 

collected using induction loops and transformed to 100 meter virtual loop data (Snelder, 2010; Vukovic 

et al., 2013).145 Our data refer to the A16 motorway, east of Rotterdam. We use 15 minute interval data 

on both directions (that have 3 lanes each) for 7.6 kilometers (between the intersections with the 

northern and southern part of the ring road, A17 and A20). We aggregate these data to hourly 

observations of travel time and flow.  

We have 771,019 hourly observations, see Table 4.3. Average highway flow is 2,963 cars per 

hour. At a maximum speed limit of 100 km/h, it takes 0.60 minutes to travel one kilometer. Average 

travel time in our data is 0.64 min/km, close to the speed limit, with a rather small standard deviation 

of 0.11 suggesting that congestion is not a major issue on this highway. So, a priori, one does not expect 

                                                           
145 In the Appendix, we provide results for actual loop detector data for weekdays of the years 2006 and 2011. We prefer to 
use virtual loop data over actual loop data because detectors experience frequent malfunction with a very high share of 
impossible outliers. 
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particularly strong effects of a strike. This is confirmed by the data. During a full-day citywide strike, 

travel time is similar to that during non-strike hours. However, focusing on averages over the whole 

day seems slightly misleading because during strike rush-hours, the effect of strikes seems much more 

pronounced: for example, during citywide strikes, travel times increase by 0.03 min/km and highway 

flow by about 29%. 

 

Table 4.3 – Summary statistics highway traffic 
 Travel time Car flow 

 Mean SD Obs. Mean SD Obs. 

Full-day citywide strike  0.64 0.11 6,426 3,033 1,244.0 6,426 

 Rush hour 0.72 0.17 1,224 4,340 886.4 1,224 

 Non-rush hour 0.62 0.07 5,202 2,753 1,113.1 5,202 

Partial-day citywide strike 0.67 0.17 5,202 3545 957.0 5,202 

 Strike & rush hour 0.73 0.19 306 3,981 638.6 306 

 Strike & non-rush hour 0.68 0.15 459 3169 481.9 459 

 Non-strike & rush hour 0.77 0.26 1,377 4,160 1,123.5 1,377 

 Non-strike & non-rush hour 0.61 0.03 3,060 3,282 796.7 3,060 

Placebo strike 0.64 0.54 1,836 2,288 1,089.2 1,836 

Non-strike 0.64 0.29 757,555 2,960 1,150.4 757,555 

 Rush hour 0.69 0.33 208,903 3,354 1,484.9 208,903 

 Non-rush hour 0.63 0.27 548,652 2,809 951.7 548,652 

Total 0.64 0.29 771,019 2,963 1,151.3 771,019 

 

Full-day strike 

Figure 4.5a – Travel time on Thursdays June 
2011 

Figure 4.5b – Car flow on Thursdays June 2011 
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Again, we show car flow for a full-strike and a partial-strike day and compare to car flow on the 

same non-strike weekdays that month (Figures 4.5b and 4.6b). Similar to inner city roads, highway flows 

are larger during strike hours, especially for the full-day strike. In Figures 4.5a and 4.6a, it is shown that 

travel time is higher during strike hours than during the same weekdays that month. These figures also 

exhibit ‘extreme’ variation for some hours. For example, on Wednesday the 18th we observe large travel 

times at 3pm and 4pm in Figure 4.6a, likely caused by an accident.  

 

Partial-day strike 

Figure 4.6a – Travel time on Wednesdays May 
2011 

Figure 4.6b – Car flow on Wednesdays May 
2011 

  

4.3 Theoretical framework and estimation method 

4.3.1 Theoretical framework 

In this paper, we use a basic theoretical framework of a transport market to interpret our empirical 

results. We assume a city that includes car travelers, bicyclists, public transport users and teleworkers 

(who stay at home). We assume that, within the city, the total number of travelers, including 

teleworkers, is fixed and denoted by N. Consequently, N includes 𝑁𝑃𝑡  public transport users, 𝑁𝐶  car 

travelers, 𝑁𝐵 bicyclists and 𝑁𝑇 teleworkers. Demand for transport mode i depends negatively on the 

generalized transport mode price pi (𝑝𝑃𝑇, 𝑝𝐶 , 𝑝𝐵 and 𝑝𝑇 , respectively), which includes travel time loss 

and positively on the generalized prices of other transport modes pj, where j ≠ i. We normalize the price 

of teleworking, hence 𝑝𝑇 = 1. The price of bicycling, 𝑝𝐵, is assumed to be exogenous. This is a 

reasonable assumption given that bicyclists mainly use bicycle lanes that are not congested. The price 

of car travel, 𝑝𝐶, is endogenous and an increasing function of the number of car travellers, 𝑁𝐶 , so 𝑝𝐶 =

𝑝𝐶(𝑁𝐶). In equilibrium, the following must hold: 
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(4.1) 
𝑁 = 𝑁𝑃𝑇(𝑝𝑃𝑇 , 𝑝𝐶(𝑁𝐶), 𝑝𝐵) + 𝑁𝐶(𝑝𝑃𝑇 , 𝑝𝐶(𝑁𝐶), 𝑝𝐵) + 𝑁𝐵(𝑝𝑃𝑇 , 𝑝𝐶(𝑁𝐶), 𝑝𝐵)

+ 𝑁𝑇(𝑝𝑃𝑇 , 𝑝𝐶(𝑁𝐶), 𝑝𝐵). 

On a strike day, public transit is unavailable, so 𝑁𝑃𝑇 = 0 and 𝑝𝑃𝑇 approaches ∞. As a result, we observe 

in the new equilibrium: 

(4.2) 𝑁 = 𝑁𝐶(∞, 𝑝𝐶(𝑁𝐶), 𝑝𝐵) + 𝑁𝐵(∞, 𝑝𝐶(𝑁𝐶), 𝑝𝐵) + 𝑁𝑇(∞, 𝑝𝐶(𝑁𝐶), 𝑝𝐵). 

In the new equilibrium, compared to the non-strike equilibrium, 𝑁𝐶 , 𝑁𝐵, 𝑁𝑇  and 𝑝𝐶(𝑁𝐶) will increase. 

The increase in 𝑝𝐶(𝑁𝐶) is due the increase in travel time through increased road congestion. It also 

follows that: − ∆𝑁𝑃𝑇 = ∆𝑁𝐶 + ∆𝑁𝐵 + ∆𝑁𝑇  where ∆ denotes changes induced by the transport strike. 

In the current paper, we have information about  ∆𝑁𝑃𝑇, we estimate ∆𝑁𝐶, and ∆𝑁𝐵, so we can derive 

∆𝑁𝑇, the number of individuals who decide not to travel, and we estimate ∆𝑝𝐶(𝑁𝐶), which we use to 

calculate the congestion relief benefit.  

For welfare analysis and policy implications, it is useful to distinguish between the marginal and 

the average congestion relief benefit of public transit. We can express the average congestion relief 

benefit of public transit as ∆𝑝𝐶 ∆𝑁𝑃𝑇⁄ , and the marginal benefit as 𝜕 𝑝𝐶 𝜕𝑁𝑃𝑇⁄ , i.e. the benefit given a 

small change in the public transport network. By examining the effect of a full public transit shutdown, 

we estimate the average, rather than the marginal benefit. The latter one is informative for 

policymakers who aim to adjust the public transport network on a small scale. Given information on 

traveler’s choices, policy makers can, at least in principle, determine which part of public transit 

generates the highest benefit. Without this information, it is difficult to determine which part of the 

public transit network has the strongest effect on reducing car congestion. Hence, the policy maker will 

choose (more or less) randomly which part of the network will be expanded, and for those adjustments 

of the transit network the marginal benefit is identical to the average benefit.146 

 

4.3.2 Estimation method 

To estimate the public transit strike effects, we use linear models for travel time and log-linear models 

for transport flows.147 We focus on the effect of citywide strikes. For these strikes, we distinguish 

                                                           
146 However, if policymakers are able to marginally adjust the network based on changes in the congestion relief benefit, it is 
plausible that the average benefit estimated by us overestimates the marginal benefit. A related issue is whether congestion 
is a linear function of car flow. Congestion levels are rather mild within Rotterdam, suggesting that congestion is almost linearly 
related to car flow (Gerolominis and Daganzo, 2008).  
147 Our results are robust to specification. When using speed instead of travel time as the dependent variable, results are 
similar, but slightly less pronounced, see Adler and Van Ommeren (2015). 
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between the effect of a full-day strike, the effect of a partial-day strike during strike hours and the 

effect of a partial-day strike outside strike hours. Because in the previous sections we have seen that 

the effects of strikes seem to differ for rush and non-rush hours, we also distinguish between rush 

hours and non-rush hours effects. 

To estimate these different strike effects, we assume that the dependent variable 𝑌𝑖,𝑡,𝐷 (i.e. travel 

time, logarithm of car flow or logarithm of bicycles flow), which is observed for a certain direction i, of 

hour t on day D, depends on a citywide full-day strike dummy 𝐹𝐷, a rush hour dummy 𝑅𝑡, a dummy 

variable 𝑆𝑡,𝐷 for strikes at hour t of day D, control variables 𝑋𝑡,𝐷, direction fixed effects 𝑎𝑖, and a random 

error term 𝑢𝑖,𝑡,𝐷 in the following way: 

(4.3) 

𝑌𝑖,𝑡,𝐷 = 𝛼𝑖 + 𝛽𝑥𝑋𝑡,𝐷 + [𝛽1𝑅𝑡 + 𝛽2(1 − 𝑅𝑡)]𝐹𝐷

+ [(𝛽3𝑅𝑡 + 𝛽4(1 − 𝑅𝑡))𝑆𝑡,𝐷 + (𝛽5𝑅𝑡 + 𝛽6(1 − 𝑅𝑡))(1 − 𝑆𝑡,𝐷)]𝑃𝐷

+ 𝑢𝑖,𝑡,𝐷 . 

The coefficient 𝛽1 captures the citywide strike effect for a full-day strike during rush hours and 𝛽2 

captures the same effect but outside rush hours. For partial-day strikes during strike hours, 𝛽3 captures 

the strike effect during rush hours and 𝛽4 for non-rush hours. The effects during non-strike hours of 

partial-day strikes are captured by 𝛽5 and 𝛽6 for rush hours and non-rush hours, respectively.  

The control variables 𝑋𝑡,𝐷 include placebo strikes, a regional bus strike, rail strikes and weather 

condition variables (precipitation, temperature and wind speed).148 We also control for a range of time 

controls. We control for ‘special’ days (i.e. Christmas, Queens Day and the annual marathon), hour of 

the week (i.e. the interaction between hour of the day and day of the week) and week of the year (i.e. 

the interaction between week and year).149 These time controls are included because we have seen in 

the previous section that traffic flows follow certain time patterns during the day, but also to address 

the possibility that the strike date might be endogenous. For example, negotiating parties (i.e. unions, 

transport firms and the government) determine when strikes occur and might take the effect on car 

travel time into account by (not) selecting certain days.150 So, the occurrence of a strike is likely not 

fully random with respect to the day of the week. This is also suggested by Table 4.1. For example, 

                                                           
148 Daily travel demand, and bicycle travel in particular, depends strongly on weather, see, for example Thomas et al. (2013). 
149 Hour of the week contains a dummy for each combination of the hours of the day (14) and day of the week (7), in total 98. 
Week of the year has a dummy for each week (40) of the year (8), in total 320. 
150 One of the drivers of strikes is the joint costs to firms and employees that bargain about labor, see Franzosi (1989) and 
Card (1990). In case of public transit, car drivers are outsiders of this bargaining process. It may be then efficient that the 
government induces public transit firms to accept terms which would have been rejected from a private firm’s consideration 
alone, in order to avoid car travelers congestion cost (Proost, 2014). 
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there are no citywide strikes on Fridays or Saturdays. Hence, including time controls is useful for 

consistency and efficiency reasons. Furthermore, to deal with heteroscedasticity and day-specific 

unobservables, we choose standard errors that are robust and clustered by day. 

 

4.4 Empirical results 

4.4.1 Inner city traffic 

We report strike effects on travel time, car flow and bicycle flow based on equation (4.3) in 

Table 4.4.151 Our results in the first column indicate that a full-day citywide strike during rush hours 

increases travel time by 0.36 min/km (about 7 km/h). This travel time increase is in line with a 9% 

increase in car flow during rush hours, as reported in the second column.152 This result is consistent 

with the literature which shows that this effect is usually in the range of 5% to 30% (Van Exel and 

Rietveld, 2001). During non-rush hours, we find a smaller travel time increase of 0.15 min/km. Hence, 

one immediate, but maybe obvious, implication is that the benefit of public transit provision in terms 

of congestion reduction is smaller outside rush hours.153 Furthermore, as indicated in the third column, 

a full-day citywide strike increases bicycle flow by 24% implying that a large share of travelers switch 

to bicycle use (rather than to car use), which presumably reduces the car flow and corresponding travel 

time increases of a strike. As we have emphasized before, bicycle ownership is high in the Netherlands, 

so this result is likely specific for bicycle-friendly cities. 

 Later on, for our welfare calculations, it seems more accurate to use a weighted-average of 

the full-day citywide strike effects, because we are interested in the average effect for a car traveler. 

In order to take into account that rush hours occur less frequent than non-rush hours, and that during 

rush hours, there is a higher flow of cars, we weight the rush and non-rush hour coefficients with their 

share of hours over the day and their share of vehicle flow.154 On average, full-day citywide strikes 

increase car flow by 7.8% and car travel times by 0.224 minutes per kilometer. We interpret the latter 

                                                           
151 See Table A2 in the Appendix for individual strike effects. These effects are more difficult to interpret given the presence 
of unobserved day-specific random error. By combining individual strikes into strike categories, any small sample bias due to 
day-specific random error is substantially reduced. 
152 That we find a substantially smaller strike effect on flow in the estimates than for the raw means in Table 3a demonstrates 
the necessity to include weather and time controls. 
153 For non-rush hours, travel demand tends to be lower. Moreover, there is a lower share of commuters, so trip rescheduling 
and trip cancellation is likely less costly to travelers. However, increases in car flows are similar (F-test p-value 0.174) for full-
day strike rush and non-rush hours. The same holds for bicycle flows (p-value 0.113). 
154 The share of rush hours of the number of hours included in our analysis is 0.29. The share of car flow during rush hours is 
0.57 (see Table 4.3a), so that ((0.36(0.57 × 0.29) + 0.15(0.43 × 0.71))/((0.57 × 0.29) + (0.43 × 0.71))  =  0.224. 
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as a strong effect: for example, the effect is about 60% higher than the value reported by Anderson 

(2014) for Los Angeles highways and several times higher than the value assumed by Parry and Small 

(2009).  

 

Table 4.4 – Travel time, car and bicycle flow  

 Travel time Car flow (log) Bicycle flow (log) 

Full-day citywide strike       

 Rush hour 0.360 *** 0.094 *** 0.244 *** 

  (0.126)  (0.021)  (0.057)  

 Non-rush hour 0.150 ** 0.069 *** 0.145 ** 

  (0.073)  (0.024)  (0.062)  

Partial-day citywide strike       

 Rush and strike hour 0.541 *** 0.142 *** 0.257 *** 

  (0.133)  (0.020)  (0.047)  

 Non-rush and strike hour 0.013  0.027  0.100 ** 

  (0.022)  (0.020)  (0.047)  

 Rush and non-strike hour 0.159 *** 0.014  -0.009  

  (0.053)  (0.024)  (0.050)  

 Non-rush and non-strike hour 0.052  0.010  0.065  

  (0.031)  (0.012)  (0.040)  

Placebo strike -0.010  -0.000  -0.023  

 (0.041)  (0.013)  (0.050)  

Regional bus strike 0.104 ** 0.033  0.186 *** 

 (0.037)  (0.024)  (0.037)  

Rail strike -0.021  0.068 *** 0.117  

 (0.041)  (0.017)  (0.092)  

Location fixed effects Included Included Included 

Hour of week fixed effects Included Included Included 

Month fixed effects Included Included Included 

Week of year fixed effects Included Included Included 

Year fixed effects Included Included Included 

Weather controls Included Included Included 

Number of observations 88,106 338,782 719,661 

R² 0.2682 0.7789 0.7474 

Note: ***, **, * indicate 1%, 5% and 10% significance levels. Standard errors in parentheses are robust and clustered by day. 
The rail and placebo strike effects on car speed are based on one and two strikes, respectively.  

 

For partial-day strikes, the point estimate of a strike during rush hours and strike hours is 0.541 

min/km. This effect is not statistically different from rush hour full day strikes (p-value 0.3259), likely 

due to limited number of observations which is only 12. For partial-day strikes, outside strike hours, 
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but during rush hours, travel times increases are substantial (0.159 min/km). These latter two results 

suggest that a continuous supply of public transit during the full day is essential for travelers. We have 

also estimated models where we allow for strike effects on days before and after the strike. We find 

no changes in car flow or travel times that extend to days before and after the strike. We find a very 

small effect on bicycle flow for the day after a strike but no effect two days after the strike. Apparently 

travelers hardly change their travel behavior ‘permanently’ due to a strike.155 

We find no effect on travel time for the three placebo strikes. This gives us more confidence in 

the methodology used. As argued above, placebo strikes are defined by us as (announced) strikes which 

are canceled, so given a large effect of announcement, canceled strikes may not be interpreted as 

placebo strikes.156 For this reason, we have tested the effect of announcement by including an 

announcement dummy. We do not find an effect of announcement on travel time, suggesting that 

canceled strikes can be interpreted as placebo strikes. 

 

4.4.2 Sensitivity analyses for travel time on inner city roads 

To verify the robustness of our results for travel time we conduct a range of sensitivity analyses. We 

find our results to be robust to various specifications. Table 4.5 shows the main results. For example, it 

is well known that the pneumatic tube speed measurement techniques, that we use to calculate travel 

time, perform less well at lower speeds. Consistent with that, we observe that there is a higher 

proportion of missing observations at lower speeds. Hence, in the first column, we include the 

proportion of cars with unknown speed as a control variable. We find that strike effects on travel time 

are somewhat reduced, but not extremely.157 Note that this control variable is highly endogenous and 

likely biases the strike effect towards zero, so we interpret the latter specification as an underestimate 

and prefer the estimates of Table 4.4 without this additional control variable.  

 

                                                           
155 The regional bus strike particularly increases bicycle flow (by 19%). This is a relatively large increase, considering the low 
modal share of regional buses and that the strike took place in non-rush hours. An explanation for this relatively large effect 
is that the strike overlapped with national school exams, so many students switch to bicycle use. We find no effect on inner 
city travel time for national rail strikes. We also find no effect on bicycle flow. The latter is not so surprising because bicycle 
and rail are complements in the Netherlands as about half of travelers use the bicycle as an access or egress mode for rail. 
Another explanation for these findings is that the share of rail in passenger transport is low in Rotterdam (2.7%), see De Vries 
(2013). Moreover, there are only two rail strikes, so these estimates are less reliable.  
156 Strike announcement has likely an effect on travel behavior according to Van Exel and Rietveld (2001). 
157 In addition, as expected, we find a positive relationship between the number of cars with unknown speed and travel time. 
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Table 4.5 – Travel time: alternative specifications 

 Travel time Travel time Speed share Travel time Travel time 

Full-day citywide strike           

 Rush hour 0.269 *** 0.108 *** 0.122 *** 0.483 *** 0.535 *** 

  (0.092)  (0.034)  (0.044)  (0.102) 

2) 

 (0.145)  

 Non-rush hour 0.101 ** 0.047 ** 0.049 ** 0.190 ** 0.109  

  (0.047)  (0.022)  (0.025)  (0.085)  (0.093)  

Partial-day citywide strike           

 Rush and strike hour 0.490 *** 0.160 *** 0.184 *** 0.268 *** 0.658 *** 

  (0.120)  (0.028)  (0.051)  (0.034)  (0.176)  

 Non-rush and strike 
hour 

-0.001  0.010  0.002  0.018  -0.031  

 (0.019)  (0.009)  (0.007)  (0.021)  (0.030)  

 Rush and non-strike 
hour 

0.124 *** 0.051 *** 0.052 ** 0.123 ** 0.349 *** 

 (0.035)  (0.012)  (0.021)  (0.059)  (0.085)  

 Non-rush and non-
strike hour 

0.051 * 0.011 * 0.016  0.072 ** 0.060  

 (0.028)  (0.010)  (0.011)  (0.034)  (0.055)  

Placebo strike -0.009  -0.001  -0.004  -0.010  0.000  

 (0.009)  (0.003)  (0.005)  (0.013)  (0.254)  

Regional bus strike 0.084 *** 0.020 * 0.040 *** 0.104 *** 0.209 *** 

 (0.021)  (0.009)  (0.013)  (0.037)  (0.021)  

Rail strike -0.009  0.004  -0.012  -0.051  -0.035  

 (0.028)  (0.013)  (0.015)  (0.043)  (0.083)  

Proportion unknown speed 6.243 ***     

 (0.347)      

Time and weather controls Included Included Included Included Not included 

Number of observations 88,106 88,106 88,106 87,882 88,106 

R² 0.5176 0.5786 0.1877 0.2685 0.0041 

Note: In the second column, cars below 31km/h censored at 31. Third column, the dependent variable is the share of cars at 
speeds beneath 31km/h. Fourth column, we exclude the citywide strikes that were not a complete public transit cancellation. 
Last column, we do not include controls. See Table 4.4 for control variables. ***, **, * indicate 1%, 5% and 10% significance 
levels. Standard errors in parentheses are robust and clustered by day. 

 

In the calculation of travel time, we have assumed that cars in the lowest speed interval – less 

than 31 km/h – travel at an average speed of 15 km/h. To see how much our results depend on this 

assumption, we estimate a model where all cars in the lowest speed interval are assumed to travel at 

31km/h. Now we find that during full-day citywide strike rush hours, travel times increase by 0.108 

min/km (see column 2). We interpret this estimate as the minimum effect because this approach 

strongly biases our results towards zero. To prove this latter point, we estimate a model where the 

dependent variable is the share of speed observations beneath 31 km/h (see column 3). Reassuringly, 
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the signs of the strike effects are in line with the main results: for example, given a full-day citywide 

strike, the share of speed observations beneath 31 km/h increases by 0.122 during rush hours. 

Four of the 13 citywide strikes are not complete, in the sense that some public transit is still 

supplied for the metro or that only the time schedule has been reduced (see Table 4.1). Consequently, 

it is plausible that our estimates are underestimates of complete strikes which are more representative 

to capture the congestion relief benefit of public transit. We therefore re-estimate the model excluding 

these four incomplete strikes. The rush hour, full-day citywide strike effect becomes more pronounced 

and is now equal to 0.483 min/km (see column 4). This result is in line with the idea that complete 

strikes entail travel time increases. Hence, importantly, it is plausible that using the estimates of Table 

4.4 will lead to underestimates of the congestion relief benefit.  

There are three competing views on which observations to include in the analysis. As detailed 

in subsection 4.2.3, we chose to exclude observations for periods entirely without strikes. We also re-

estimate the model, including all observations and another where we include only observations of 

months with strikes. The former specification (with all observations) has the disadvantage of including 

observations for periods that may not be comparable in terms of unobservables but includes a larger 

number of observations. The latter specification (only strike months) has the advantage of including 

only comparable days to the strike but reduces the degrees of freedom. The results which can be 

provided upon request are essentially identical to those of Table 4.4. 

In the fifth column of Table 4.5, we re-estimate the model without any time or weather 

condition control variable. Not surprisingly, standard errors tend to increase due to a less efficient 

estimation specification. The effects are identical in sign to those in Table 4.4 but are usually somewhat 

larger in size. 

In a specification similar to equation (4.3), we estimate hour-of-the-day specific effects on travel 

time (not distinguishing between full-day and partial-day strikes), reported in the first column of Table 

4.A3 in the Appendix. We find the strongest strike effect on travel times during morning and afternoon 

rush hours which provides more confidence in our results. Given the latter specification, we also 

estimate strike effects for both speed measurement locations (`s-Gravendijkwal and Maastunnel) 

separately (see last two columns of Table 4.A3). These results indicate that the strike effect on travel 

time is similar across inner city roads. 
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4.4.3 Highway traffic 

We now focus on the strike effects on the highway ring road. It appears that citywide strikes also have 

a positive effect on travel times, see Table 4.6. However, in comparison to inner city roads, travel time 

increases are much smaller. Our result verifies the assumption by Anderson (2014) that car drivers on 

inner city roads benefit substantially more from public transit through reduced car congestion than car 

drivers on highways. On the highway, the full-day strike effects for rush and non-rush hours are only 

0.017 min/km, and only statistically significant for the latter. Slightly surprising, we find a stronger 

effect for partial-day strikes, but the effect relies upon few observations and is small in magnitude.158 

For example, during rush hours, the effect is still only 0.056 min/km during partial-day citywide strikes.  

 

Table 4.6 – Travel time and car flow on highways 

 Travel time Car flow (log) 

Full-day citywide strike     

 Rush hour 0.017  0.031 * 

  (0.011)  (0.017)  

 Non-rush hour 0.017 ** -0.017  

  (0.001)  (0.028)  

Partial-day citywide strike     

 Rush and strike hour 0.056 *** -0.040 * 

  (0.019)  (0.023)  

 Non-rush and strike hour 0.065 *** -0.044 ** 

  (0.015)  (0.021)  

 Rush and non-strike hour 0.034  -0.073 *** 

  (0.054)  (0.024)  

 Non-rush and non-strike hour -0.020  -0.016  

  (0.014)  (0.025)  

Placebo strike 0.049 *** 0.002  

  (0.012)  (0.021)  

Time and weather controls Included Included 

Number of observations 771,019 771,019 

R² 0.0727 0.8175 

Note: See Table 4.4 for control variables. ***, **, * indicate 1%, 5% and 10% significance levels. Standard errors in parentheses 
are robust and clustered by day. 

                                                           
158 These results are in line with the findings for the actual, but less trustworthy, induction loop data of 2006 and 2011 in Table 
4.A4 in the Appendix 4.A. 
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We use a travel time increase of 0.017 min/km in our welfare calculations later on.159 We 

interpret this result as a small effect: it is several times smaller than reported by Anderson (2014) for 

Los Angeles (and about half of the value assumed by Parry and Small, 2009). We can only speculate 

about explanations for this difference in the magnitude of the effect. The main explanation is likely that 

the highways in Los Angeles that are chosen by Anderson (2014) are more congested than those of 

Rotterdam. 

In line with a small strike effect on travel time, we find little or no increase in car flow on 

highways.160 This finding is similar to Lo and Hall (2006) and Anderson (2014) and consistent with 

Duranton and Turner (2011) who do not find an effect of bus supply on highway flow for the United 

States.161 Finally, note that the placebo strike effect is statistically significant, but this effect disappears 

when we use the logarithm of speed as an alternative dependent variable, which suggests that this 

result is spurious (Adler and Van Ommeren, 2015). 

 

4.4.4 Traffic accidents 

So far, we have focused on travel times affected by public transit strikes. However, it is possible that 

public transit provision affects traffic accidents, because it influences the travel mode of travelers as 

well as car speed on the road (Aljanahi et al., 1999).162 Note that in the Netherlands, most traffic 

accidents occur during bicycling and car use, whereas severe accidents tend to occur at higher car 

speeds. So, it seems possible that during strikes the number of accidents increases whereas accident 

severity decreases.  

We have police-reported daily traffic accidents data for Rotterdam for the years 2000 to 2009 

(except for 2008). Minor accidents are often not reported to the police, and our data therefor over-

                                                           
159 Travel time increases are identical for rush and non-rush hours of full-day city wide strikes and jointly significant (p-value 
0.034). 
160 We do not find a pronounced strike effect, in contrast to descriptive statistics in Table 4.3b, which is a result of including 
time controls in the multivariate analysis. Note that for the inner city roads by including time controls, the effect of strikes 
become more pronounced. 
161 There are very few observations with high travel times and low flow in the inner city (which are likely due to road works, 
accidents etc.) but for highways these observations are more common. See Figures 4.A4 and 4.A5 in the Appendix, the 
relationship between flow and speed is shown for the highway as well as the inner city.  For more on the fundamental diagram 
of traffic flow, see Small and Verhoef, 2007, p.84-88. In our data, we have a speed-flow elasticity of -0.07 for inner city roads 
and -0.03 for highways using a double log specification. 
162 Our travel time measure accounts for that road accidents, especially on highways, often increase travel times by obstructing 
free flow, see Adler et al. (2013).  
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represents severe accidents. When we estimate the effect of strike on number of accidents with similar 

controls as above, the results do not show any strike effect on accidents.163 

 

4.5 Welfare analysis  

4.5.1 External congestion loss of strikes  

We determine the welfare loss due to additional time losses by car travelers given a full-day citywide 

strike on a weekday using the theoretical framework outlined in 3.1. We will assume an hourly value of 

time of €14 per person implying an hourly value of time of €20 per car.164 In addition to congestion 

losses there are rescheduling costs to car travelers.165 We do neither include these costs, nor any other 

external cost of car travel that is likely an order of magnitude smaller than that of congestion.166 

 

Table 4. 7 – Number of trips per day for Rotterdam metropolitan area 
 Non-strike day Strike day (% change) Differences 

Public transit 348,000 -100% -348,000 

Car (driver)  804,000 +7.8% 63,516 

Car (passenger) 408,000 +7.8% 32,232 

Bicycle 588,000 +18.0% 105,840 

Trips not replaced by car or bicycle   146,412 

 

In Rotterdam, 1.2 million inhabitants conduct each day 348,000 public transit trips, 804,000 car 

driver trips, 408,000 car passenger trips, 588,000 bicycle trips and 765,000 walking trips, so in total 

2.913 million trips (De Vries, 2013), see Table 4.7. During a full-day citywide strike, public transit is not 

                                                           
163 The descriptive statistics suggest that there might be a negative effect of strikes on the number of accidents: the average 
number of traffic accidents on strike days is substantially less than on other days (7.0 compared to 9.2). 
164 In Rotterdam, a car contains on average 1.5 persons (CBS, 2014). We assume that the same occupancy rate applies during 
strikes. The assumed value of time is slightly higher than the commonly used value of time for commuters based on stated-
preference studies for the Netherlands, which is 10 euro. Our assumption of €14 per person can be justified because a 
substantial proportion of car drivers travel for business for which the value of time is about €30 per hour. Assuming different 
time values for rush hours and non-rush hours might be more reasonable, but our results are not so sensitive to that. For 
example, when we assume that the value of time is €25 per car during rush hours and €15 per car during non-rush hours then 
we obtain almost identical benefits. 
165 We find that the peak hours start earlier and end later for citywide strikes, suggesting that these costs are not zero. 
166 Assuming, that the external cost of CO2 is €100 per ton, the additional external benefit is only €0.002 per public transit 
kilometer. For dense western metropolitan areas, Glaeser and Kahn (2008) find that the carbon emission savings from public 
transit use are about two-thirds of other car emissions. The benefits from public transit to public health in terms of pollution 
reduction are about €0.02 (Parry and Small, 2009). For higher polluted cities, such as Taipei, these external benefits might be 
much larger (Chen and Whalley, 2012).  
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available, so there are no public transit trips. Our estimates indicate that a strike induces car flow to 

increase by 7.8%, so 63,516 additional car driver trips and 32,232 additional car passenger trips, and 

bicycle flow to increase by 18%, so 105,840 trips. This implies that the increase in bicycle use is about 

equal to the increase in persons which travel by car. Furthermore, it means that 201,588 out of 348,000 

canceled public transit trips are substituted by a car or bicycle trip. The other 146,412 trips, labeled as 

teleworking trips in section 3.1, are either rescheduled to another day, made by another mode not 

observed by us, most likely walking, or fully canceled.167  

In Table 4.7, column 1, we provide the assumptions which allow us to calculate the external 

cost of congestion during strikes. In Rotterdam, cars trips have an average length of 15 km of which 

62% are driven on inner city roads and the remaining 38% on highways.168 Given the estimated travel 

time increase of 0.224 min/km on inner city roads (the weighted-average effect) and 0.017 min/km on 

highways, a strike induces an additional external cost of congestion of €629,839. The majority of this 

cost, €601,845, is on inner city roads, and an additional €27,995 on highways.169 

 

4.5.2 Congestion relief benefits 

Based on the external costs of strikes, we aim to calculate the long-term congestion relief benefit of 

public transit. We will start from the assumption that this beneficial effect of public transit provision is 

the same in the long run as in the short run. As discussed in detail later, this assumption essentially 

implies that the sum of the public-transit induced effects through changes in car ownership, trip 

cancellations, route choices and relocation decisions by households and firms on car travel demand is 

zero, but allows some of these effects to be positive or negative. The annual congestion relief benefit 

is then calculated by annualizing the public transit short-term congestion relief benefit (assuming 252 

working days). The annual benefit is then €159 million (see Table 4.8), about €132 per inhabitant. This 

excludes any benefits of public transit provision on weekends that we assume to be negligible. Given 

                                                           
167 These descriptive statistics are in line with previous studies which report that during strikes 20% of canceled public transit 
trips are substituted by walking, 10% fully canceled and 10% rescheduled (PbIVV, 1984; van Exel and Rietveld, 2001). One of 
the main arguments against public transit subsidies is a low price cross elasticity between public transit and car use. Note that 
we do not examine changes in public transit prices. However, we find that a third of public transit users substitute to car use 
during strikes. 
168 The share of car travel distances on inner city roads and highways are about the same for the whole of the Netherlands 
(CBS, 2014). For cities such as Rotterdam, one expects a higher share of inner city road use. On the highway ring road around 
Rotterdam we observe 331,744 trips per day, suggesting that 62% of trips are on inner city roads. 
169 The external costs on inner city roads given a trip length of 15km, 866,712 car trips and a €20 per hour value of time is 
equal to 0.224 × 15 × 866,712 × 0.62 × 20/60 =  €601,844. The external cost on highways is then equal to 0.017 × 15 ×
866712 × 0.38 × 20/60 =  €27,995. 
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721 million public transit passenger kilometers (OVPRO, 2014), the congestion reduction benefit per 

public transit kilometer is €0.22. This benefit is substantial given that the cost per public transit 

kilometer is €0.46.  

The costs of providing public transit in Rotterdam are partially covered by subsidies, about €200 

million per year, i.e. €0.28 per public transit kilometer.170 The congestion relief benefit is then about 

80% of subsidies.171 It is useful to examine this result under different assumptions. For example, if we 

assume that the specification of complete strikes (reported in Table 4.5, column 4) is more indicative 

of the congestion relief benefit, then the benefit even slightly exceeds current subsidies (see column 

3). In contrast, if we make very conservative assumptions by assuming a trip length of 10 km, an equal 

split in distance traveled on highway and inner city roads, and that only inhabitants in the city of 

Rotterdam (and not the whole metropolitan area) are affected by the strike, then the congestion relief 

benefit is still 22% of the subsidy (column 2).172 These estimates indicate that the congestion relief 

benefit alone is substantial but possibly insufficient to justify the current supply of public transit in 

Rotterdam. Additional gains of public transit provision, such as economies of scale in public transit 

provision and productivity increases due to decreased car congestion might support current levels of 

subsidies (Graham, 2007). To do an overall welfare analysis of public transit provision is however 

beyond the scope of this paper.173 

It is important to emphasize that there are some reasons to believe that we have either 

overestimated or underestimated the public transit congestion relief benefit because we have assumed 

that the long-run effect of strikes is equal to their short-run effect. First, we may then underestimate 

the long-term congestion relief benefit because during strikes about 20% of trips are canceled (see also 

PbIVV, 1984; van Exel and Rietveld, 2001). For longer periods without public transit, particularly for 

                                                           
170 Annual subsidies to operational costs for public transit slightly vary but were €200 million in 2011 (Stadsregio Rotterdam, 
2012). That is about €166 per capita, and about 0.3% of average gross salary. By comparison, bicycle infrastructure 
expenditure by the municipality is only €30 million per year (Savelberg, 2013). Note that bicycle lanes occupy space; hence 
the social cost of bicycle infrastructure will be higher than the expenditure by the municipality. 
171 Total operational cost of public transit was about €333 million. The farebox recovery for Rotterdam is between 35% to 40% 
of operational cost, similar to many other cities with extensive public transit in Europe and the United States. 
172 We again employ a weighted average of the strike effect on travel time. 
173 We ignore also other welfare aspects, such as the potential excess tax burden of public transit subsidy generation. When 
the subsidies are generated through labor taxation they might cause additional welfare losses outside the transport market, 
whereas the use of congestion pricing revenue might yield a double dividend (see, e.g. Parry and Bento, 2001). Note that we 
examine the benefits of several transit modes. However, each public transit mode might yield substantially different net 
benefits, as suggested by Winston and Maheshri (2007). Further, there are egalitarian reasons for subsidies, since public transit 
disproportionately supports the economically less well-off parts of society (see, e.g. Johnson, 2014, Compton and Pollack, 
2014). 
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commuting, it is unlikely that so many trips are canceled and these trips will contribute to additional 

car congestion.  

Second, we may underestimate the benefit, because for longer periods without public transit, 

current public transit travelers will increase car ownership and their use, so increasing car congestion. 

This effect is likely limited and has a clear upper bound. For example, in Dutch rural areas, where public 

transit is virtually absent, car ownership per household is only 30% higher than in urban areas (CBS, 

2014). Note that car ownership in rural areas is also higher because of lower population and 

employment densities. Hence, a 20% increase in trips seems a more reasonable estimate. 

 

Table 4.8 – Congestion relief benefit 

 (1) (2) (3) 

Assumptions Standard Very conservative Full-day strikes only 

Area affected Metropolitan City  Metropolitan 

Number of inhabitants affected 1.2 million 0.6 million 1.2 million 

Car trips weekday 804,000 402,000 804,000 

Average trip distance 15 km  10 km 15 km  

Value of time per car  €20 per hour €20 per hour €20 per hour 

Speed benefit inner city 0.224 min/km 0.224 min/km 0.293 min/km 

Speed benefit highway 0.017 min/km 0.017 min/km 0.017 min/km 

Inner city to highway km ratio 62/38 50/50 62/38 

Results    

Weekday public transit benefit inner city €601,844 €161,786 €787,234 

Weekday public transit benefit highway €27,995 €12,278 €27,995 

Overall public transit benefit €629,839 €174,064 €815,229 

Annual public transit benefit (weekdays) €159 million €44 million €205 million 

Public transit subsidies €200 million €200 million €200 million 

Congestion relief benefit to subsidies 80% 22% 103% 

 

Third, we may overestimate the benefit by ignoring residential and workplace location 

decisions that are also based on travel times (Kantor et al., 2014; Kok et al., 2014; Johnson, 2014). 

Without public transit and higher levels of car congestion, some households and firms would re-

evaluate their location decision and may move closer to each other, hence reducing car travel. The size 

of this effect is unknown but must be small because it is a second-order effect. Hence, arguably, the 
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effects of canceled trips and increased car ownership roughly cancel each other, whereas the effect of 

relocations is small. This suggests that our assumption that the long-term and short-term benefits are 

roughly equal to each other is not unreasonable. 

 

4.6 Conclusion 

Public transit provision is a widely-accepted policy measure to reduce road congestion. The level of 

public transit provision and therefore the level of subsidies to public transit are subject of debate in 

many countries (e.g. Parry and Small, 2009; Anderson, 2014). We add to this debate by estimating the 

effect of multiple public transit strikes on car travel time losses for inner city roads and highways of 

Rotterdam, which is a rather uncongested city. This quasi-natural experiment allows us to determine 

the congestion relief benefit, i.e. the monetary value of a reduction in car congestion due to public 

transit provision.  

We demonstrate that during a citywide strike, car travel time within the city increases by about 

0.224 min/km. For highways, strikes exhibit a much smaller travel time increase of about 0.017 min/km. 

Hence, for cities such as Rotterdam, travelers on inner city roads benefit much more from public transit 

provision than highway travelers. For the city as a whole, the travel time increase for car travelers is 

about 0.145 min/km. During rush hours, the travel time increase is more pronounced and public transit 

provision reduces car travel time on inner city roads by about 0.360 min/km travelled. Our main finding 

is the congestion relief benefit is substantial and about half of the public transit operating cost, 

equivalent to about 80% of public transit subsidies. Consequently, this indicates that for Rotterdam, 

and likewise for other cities that are mildly congested, substantial subsidies to public transit are 

economically justified. This is likely even more true for highly congested cities. 

We also show that on a strike day, the increase in bicycle users is about equal to the increase 

in car travelers. This may be a typical result for a city in a country that is well known to have above-

average bicycle use, nevertheless, this finding supports the claim that bicycle-promoting policies (such 

as bicycle lanes) may be a cost-effective way of reducing car travel time losses. 
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Appendix 4.A 

Figure 4.A1 – Measurement stations 

 

Table 4.A1 – Number of measurement locations and directions  
Transport mode Locations Directions 

Car flow 8 12 

Car flow and speed 2 4 

Bicycle flow 20 36 
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Figure 4.A2 – Bicycle flow Thursdays June 2011 Figure 4.A3 – Bicycle flow Wednesdays May 201 

 
 

Figure 4.A4 – Speed-flow relationship inner city 
roads 

Figure 4.A5 – Speed-flow relationship highway 
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Table 4.A2 – Travel time, car and bicycle flow on inner city roads 
Strike mode Travel time Car flow (log) Bicycle flow (log) 

Rail strike 21-12-2000   0.108 *** 0.069 ** 

   (0.028)  (0.035)  

Citywide strike 14-10-2004 0.199 *** 0.126 *** 0.510 *** 

 (0.017)  (0.013)  (0.055)  

Rail strike 17-06-2005 -0.028 ** 0.059 *** -0.055 ** 

 (0.013)  (0.016)  (0.022)  

Citywide strike 29-06-2005 0.466 *** 0.114 *** 0.037  

 (0.047)  (0.024)  (0.051)  

Citywide strike 18-09-2006 0.107 *** 0.091 *** 0.072 ** 

 (0.034)  (0.018)  (0.029)  

Citywide strike 25-09-2006 0.404 *** 0.162 *** 0.167 *** 

 (0.015)  (0.011)  (0.032)  

Citywide strike 16-02-2011 -0.002  0.039 *** 0.191 *** 

 (0.019)  (0.010)  (0.062)  

Citywide strike 11-05-2011 0.461 *** 0.144 *** 0.250 *** 

 (0.067)  (0.014)  (0.046)  

Citywide strike 09-06-2011 0.255 *** 0.012  0.306 *** 

 (0.030)  (0.044)  (0.030)  

Citywide strike 08-10-2003 -0.013  0.031 *** 0.245 *** 

 (0.017)  (0.010)  (0.041)  

Citywide strike 04-09-2006 0.012  -0.028 ** -0.019  

 (0.014)  (0.012)  (0.066)  

Citywide strike 15-11-2006 -0.021  -0.028 * 0.065  

 (0.040)  (0.017)  (0.065)  

Citywide strike 12-04-2011 -0.023  0.060 *** 0.022  

 (0.016)  (0.014)  (0.032)  

Citywide strike 29-06-2011 0.049  0.040  0.152  

 (0.033)  (0.048)  (0.084)  

Citywide strike 20-11-2011 -0.027 *** 0.019 ** -0.077 *** 

 (0.006)  (0.008)  (0.020)  

Regional bus strike 20-05-2008 -0.006  -0.014  0.050  

 (0.035)  (0.021)  (0.057)  

Regional bus strike l 21-05-2008 0.273 *** -0.037 ** 0.085  

 (0.037)  (0.020)  (0.056)  

Regional bus strike 22-05-2008 0.203 *** 0.014  0.027  

 (0.024)  (0.021)  (0.056)  

Placebo Rail 02-04-2001   0.024  0.173 *** 

   (0.016)  (0.020)  

Placebo Citywide strike 06-10-2009 0.058 *** -0.0227 * -0.046 * 

 (0.017)  (0.0133)  (0.025)  

Placebo Citywide strike 06-11-2011 -0.069 *** -0.007 *** -0.114 *** 

 (0.020)  (0.008)  (0.023)  

Time and weather controls Included Included Included 

Number of observations 88,106 338,782 719,661 

R² 0.2687 0.7790 0.7474 

Note: Strike dummies apply for hours when strike is reported. For the 2000 rail and 2001 placebo strike there is no travel time information 
available. See Table 4 for control variables. ***, ** indicate 1 and 5% significance levels. Standard errors are robust and clustered by day. 



Appendix 4.A 

107 
 

Table 4.A3 – Travel time for strike hours by location 
 Travel time Travel Time   Travel Time  

Location All `s-Gravendijkwal Maastunnel 

Citywide strike hour       

 6am to 7am 0.026  0.056 * -0.069  

  (0.021)  (0.028)  (0.022)  

 7am to 8am 0.101  0.165 * 0.018  

  (0.071)  (0.111)  (0.039)  

 8am to 9 am 0.389 *** 0.495 *** 0.250  

  (0.118)  (0.181)  (0.158)  

 9am to 10am 0.136 * 0.228 * -0.002  

  (0.077)  (0.124)  (0.031)  

 10am to 11am 0.024  0.035  -0.006  

  (0.018)  (0.030)  (0.024)  

 11am to 12 am 0.004  0.014  -0.011  

  (0.021)  (0.028)  (0.020)  

 12am to 1pm -0.009  0.004  -0.019  

  (0.019)  (0.027)  (0.017)  

 1pm to 2pm 0.033  0.083  -0.030 * 

  (0.064)  (0.114)  (0.015)  

 2pm to 3pm 0.096  0.162  -0.007  

  (0.114)  (0.189)  (0.017)  

 3pm to 4pm 0.228 * 0.258  0.189  

  (0.132)  (0.189)  (0.107) * 

 4pm to 5pm 0.286  0.410 * 0.114  

  (0.191)  (0.213)  (0.193)  

 5pm to 6pm  0.438  0.474  0.354  

  (0.287)  (0.366)  (0.265)  

 6pm to 7pm 0.665 ** 0.707 ** 0.578  

  (0.327)  (0.324)  (0.363)  

 7pm to 8 pm 0.325 * 0.386 * 0.240  

  (0.179)  (0.215)  (0.154)  

Citywide non-strike hour 0.090 *** 0.141 ** 0.025 * 

 (0.028)  (0.050)  (0.011)  

Placebo strike -0.010  0.005  -0.016 ** 

 
(0.128) 

) 
 

(0.032) 
 

(0.006) 
 

Regional bus strike 0.103 *** 0.106  0.103 *** 

 (0.037)  (0.072)  (0.015)  

Rail strike 0.084  0.110  0.060  

 (0.070)  (0.079)  (0.062)  

Time and weather controls Included Included Included 

Number of observations 88,106 46,441 41,665 

R² 0.2685 0.2873 0.3399 

Note : ***, **, * indicate 1%, 5% and 10% significance levels. Standard errors in parentheses are robust and clustered by day. 
The rail and placebo strike effects on travel time are based on one and two strikes, respectively.  
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Table 4.A4 – Travel time and flow on highways with actual induction loop data 

 Year 2011 Years 2006 and 2011 

 Travel time Car flow (log) Travel time Car flow (log) 

Full-day citywide strike         

 Rush hour 0.037  0.024 *** -0.003  0.010  

  (0.022)  (0.007)  (0.048)  (0.011)  

 Non-rush hour 0.002  0.009  0.039  0.003  

  (0.015)  (0.006)  (0.029)  (0.006)  

Partial-day citywide strike         

 Rush and strike hour -0.102 * 0.058 *** -0.120 ** 0.051 *** 

  (0.059)  (0.013)  (0.047)  (0.011)  

 Non-rush and strike hour -0.002  0.042 *** -0.070  0.022 * 

  (0.050)  (0.011)  (0.045)  (0.013)  

 Rush and non-strike hour -0.051 * -0.000  -0.033  0.007  

  (0.050)  (0.008)  (0.040)  (0.009)  

 Non-rush and non-strike hour -0.114  0.016 ** -0.069  0.013 * 

  (0.045)  (0.008)  (0.048)  (0.007)  

Time and weather controls Included Included Included Included 

Number of observations 57,344 57,344 107,324 107,324 

R² 0.1095 0.9499 0.0919 0.9380 

Note: See Table 4 for control variables. ***, **, * indicate 1%, 5% and 10% significance levels. Standard errors in parentheses 
are robust and clustered by day. 



 

109 
 

5 Road congestion and incident duration 

 

5.1 Introduction174 

Traffic congestion is an omnipresent phenomenon during rush hour in densely-populated regions (see, 

for example, Arnott and Small, 1994; Downs, 2004).  We focus on non-recurrent congestion on 

highways, which is mostly caused by road accidents, and other types of incidents (e.g., object on road, 

car breakdown).175 This type of congestion constitutes roughly one-quarter of highway congestion 

(Snelder et. al, 2013). In the current paper, we aim to estimate to what extent the level of non-recurrent 

congestion may be changed by public incident management policies and in particular by reducing the 

incident duration, i.e. the time it takes that all incident-associated traffic measures are lifted. Such 

measures include, for example, traffic warnings, speed reductions and lane closures. Lanes are seldom 

completely closed. For example, in the Netherlands, for 86% of incidents at least one lane is closed, but 

for only 8% of incidents all lanes are closed (Snelder and Drolenga, 2011). Given an incomplete closure 

of lanes, the time loss for a driver due to an incident is much shorter than the incident duration.176 We 

assess the marginal costs of incident duration, distinguishing between the duration effects of accidents 

and other incidents. 

Not only incident duration, but also traffic demand, and therefore recurrent congestion, 

determines non-recurrent congestion costs (for the literature on traffic demand and congestion, see, 

e.g., Beckmann et al., 1956; Goodwin, 2004; Small and Verhoef, 2007). The costs of non-recurrent 

congestion can be reduced through policies that shorten incident duration and re-establish traffic free 

flow.177 The incident duration reduction effectiveness has been discussed widely, see for example, 

Carson et al. (1999). This connection between duration and non-recurrent congestion is also discussed 

                                                           
174 This chapter is based on Adler, M. W., van Ommeren, J., & Rietveld, P. (2013). Road congestion and incident 
duration. Economics of transportation, 2(4), 109-118. This paper is funded by Kennis voor Klimaat. We thank Damir Vukovic 
and Maaike Snelder, from TNO, for support in data acquisition and constructive remarks and Paul Fortuin from Rijkswaterstaat 
for funding. Furthermore, we thank the audience at Tinbergen Institute seminar, Amsterdam, the 2013 NECTAR conference, 
Ponta Delgada, the 2013 NÁRSC conference, Atlanta, as well as two anonymous reviewers and the editor Mogens Fosgerau 
for constructive remarks. 
175 We define an incident as an ‘irregular’ occurrence on a highway, including objects on the road, car break downs, one-sided 
or two-sided accidents. 
176 Our data, discussed later on, suggest that the time loss is only 18 to 25 % of incident duration.  
177 Incident duration studies often focus on the effects of incident characteristics on incident duration for specific highways, 
see, for example, Guiliano (1989) and Jones et al. (1991). These studies point out that incident duration depends on incident 
type and severity. We will see that the effect of incident duration almost fully captures the effects of incident characteristics 
on non-recurrent congestion. 
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in Garrison and Mannering (1990), who use a traffic simulation model for highways in the Seattle urban 

area. They find that it an extremely congested location where three out of four lanes are closed, $2,000 

is lost in travel time for each additional minute of accident duration. Nam and Mannering (2000) show 

that the public agency that leads the response to the incident (e.g., fire department or police) affects 

the length of the incident duration.178 

We contribute to the literature by estimating the effect of incident duration on non-recurrent 

congestion using microdata on incidents for the entire Dutch highway network. Importantly, in our 

estimation methodology, we take into account time-invariant, i.e. location, on a 100m precision level, 

as well as time-varying road characteristics, such as the level of recurrent congestion. Furthermore, we 

deal with selection effects and endogeneity issues. Our results show that there is a strong positive, but 

concave, effect of incident duration on non-recurrent congestion for accidents and other incidents. 

 

5.2 Data and descriptive statistics 

Our data set comprises information on highway incidents from five types of road service providers (i.e., 

incident management organizations, towing companies, medical response teams, police and fire 

departments) for the years 2007 to 2009 for the entire Netherlands.179 We also use traffic flow data 

from the Ministry of Infrastructure and the Environment (RWS), weather information of the Royal 

Netherlands Meteorological Institute (KNMI) and precipitation radar information (Buienradar). 

In our analysis, the dependent variable is the level of non-recurrent congestion as a result of an 

incident. We focus on 100 meter locations where each incident at a location is an observation.180 Most 

of the time, locations are incident free. However, at many locations traffic intensity may still regularly 

exceed road capacity and cause congestion. Hence, non-recurrent congestion is the additional increase 

of congestion due to an incident in comparison to the ‘normal’ situation - i.e. recurrent congestion level 

- at a certain location and time of the day. For each incident, we have accurate estimates for the levels 

of non-recurrent and recurrent congestion, based on traffic intensity and speed data obtained from 

                                                           
178 Lee and Fazio (2005) findings suggest that response time, i.e. the time it takes the incident manager to arrive at the location 
of an incident and clearance time, i.e. the crash-removing duration, are also a function of time and incident characteristics 
(e.g. severity, type of cars). 
179 Figure A1 in the Appendix shows a map of the national Dutch highway network. For a minor number of highways with low 
traffic intensity (north of Amsterdam and west of Breda), data is not available. 
180 Our observations are representative of incidents on the highway network, but not representative of locations on the 
network.  
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induction loops.181  Congestion levels are calculated at the time and location of the incident for the 

entire highway network. Therefore, our congestion measure includes both primary congestion, i.e. on 

the lane(s) of the incident, and secondary congestion, i.e. on the opposite lane and spillback on the 

connections to other highways. Primary non-recurrent congestion accounts for about 70% of overall 

non-recurrent congestion.  

 

Table 5.1 – Descriptives of incident features 
 Selected data set Full data set 

 (1) (2) (3) (4) (5) 

 
Positive 

recurrent 
congestion 

Positive 
recurrent 

congestion 

Positive 
recurrent 

congestion 

Zero 
recurrent 

congestion 
 

 Accidents Non-accidents    

Non-recurrent congestion (VLH) 449.6 367.1 424.9 61.1 62.1 

Recurrent congestion (VLH) 103.9 94.2 101.0 0 22.6 

Incident duration (minutes) 48.7 46.1 47.9 70.2  

Accident  1 0 0.70 0.61 0.39 

Type of vehicle involved      

    Passenger car  0.60 0.38 0.53 0.47 0.41 

    Truck  0.14 0.24 0.17 0.22 0.11 

    Motorcycle  0.019 0.0050 0.015 0.010 0.0053 

Type of damage      

    Injury and Fatality  0.10 0 0.073 0.079 0.014 

    Severe material damage 0.26 0 0.18 0.16 0.059 

Number of observations 6,506 2,788 9,294 2,352 263,185 
 

Note: Values refer to averages (and shares). 

 

Recurrent congestion is measured by the median weighted road congestion for each incident 

location and time of day, using an eight week window around the incident.182 To calculate the median, 

only observations within this window that are ‘similar’ to the time of the incident are included. 183 To 

be precise, it includes the other six days of the week of the incident and the same day of the week for 

four weeks before and after the incident (congestion on the day one week before and after the incident 

                                                           
181 Congestion has been calculated through traffic flow data analysis for the entire highway network. Note that stationary cars 
are not a major concern. For details, see Snelder and Drolenga (2011) and Snelder et al. (2013). Also, see Figure A2 in the 
Appendix for an example of the traffic flow data. 
182 The probability to measure an outlier value is smaller with the median than with the mean. 
183 Our measurement of recurrent congestion is independent of the level of non-recurrent congestion, because the day of the 
incident is not included in the calculation.  
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receives twice the weight).184 Non-recurrent congestion is calculated as the difference between total 

congestion and recurrent congestion.185 Congestion is measured in vehicle-loss-hours (VLH).186 Incident 

duration is measured in minutes from the time when the incident is registered by RWS (the road service 

provider) until the time all traffic measures associated with the incident are lifted.  

The full data set contains 263,185 incident observations of which about 40% are accidents, 

defined here as incidents that involve a vehicle damage.187 Registration of incident duration by the 

agencies involved (e.g., incident management crew, police) was not obligatory during the period of 

observation. For only 11,646 observations, the incident duration is known. We select these 

observations. Among these, recurrent congestion is zero for 2,352 observations (about 20% of the 

sample), but positive for 9,294 observations, see columns (3) and (4) in Table 5.1. We will focus on the 

latter group, because non-recurrent congestion levels are generally small when recurrent congestion 

is zero (see Table 5.1, (4)). So, a positive level of recurrent congestion is generally a condition that non-

recurrent congestion occurs. The selected data set is clearly not random, which may bias our estimates, 

most likely upwards. For example, the shares of accidents and of incidents with injuries and fatalities 

are larger in the selected data set (see Table 5.1).188 Plausibly, incident managers devote more attention 

to these incidents, increasing the likelihood of recording incident duration. Later on, we use a Heckman 

selection approach to deal with non-random data selection. The instrument for this approach is defined 

by the source that reported the incident to RWS. In addition, the average levels of non-recurrent and 

recurrent congestion are five to six times larger in the selected data set, likely because locations and 

times with high traffic intensity are prioritized by road service providers.189  

 

                                                           
184 For an example of how this median is calculated, see Table 5.A1 in the Appendix. 
185 Non-recurrent congestion must be non-negative. However, due to limitations in the way recurrent congestion is 
approximated, non-recurrent congestion is negative in 0.02% of observations. We exclude these few observations. 
186 Hence, one car waiting in a traffic jam for one hour results in the same VLH as 60 cars delayed by one minute. 
187 We exclude observations when no information on type of incident (i.e., accident or no accident) is provided. 
188 For example, in the selected data set 68% of incidents are accidents whereas in the full data set it is 39%. 
189 For example, an incident (e.g., car break down) during the night on an empty highway will receive less attention from road 
service agencies than a fatal accident during rush hour on a congested highway. 
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Figure 5.1 – Density of non-recurrent congestion Figure 5.2 – Density of incident duration 

 

Figure 5.3 − Density of recurrent congestion  

 

 

In the selected data set, accidents are similar to non-accidents in terms of average incident 

duration (46 and 49 minutes respectively) and recurrent congestion (94 and 104 VLH, respectively), but 

average levels of non-recurrent congestion are about 25% higher for accidents (450 and 361 VLH, 

respectively), see Table 5.1, (1) and (2). This table also shows that, by definition, incidents do not involve 

any damage or injuries, whereas about 36% of accidents involve fatalities, injuries or severe material 

damage. 
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Figure 5.4 − Non-recurrent congestion to incident duration 

 
 

Recurrent and non-recurrent congestion follow approximately an exponential distribution, so 

low values are more common than high values, see Figures 5.1 and 5.3. For example, the maximum of 

recurrent congestion in our data is 4,271 VLH which is 40 times larger than the average value of 101 

VLH. In our data the variation in recurrent congestion between locations is much larger than the within 

variation over time. Hence, it is useful to label locations with larger levels of congestion as ‘congested 

locations’. Accordingly, in the analysis of the incident duration effect later, we will distinguish between 

locations with average recurrent congestion and congested locations. Incident duration is 

approximately log-normal distributed (see Figure 5.2), and durations up to 100 minutes are particularly 

common. 

Figure 5.4 shows a positive, concave relationship between incident duration and non-recurrent 

congestion.190 This positive effect is particularly clear for incident durations of less than 100 minutes 

(about 90% of observations). 

 

5.3 Method 

To estimate the effect of incident duration on non-recurrent highway congestion, we estimate a log-

log specification for the 6,506 observations where recurrent congestion is positive.191 This specification 

                                                           
190 In this figure, incident duration is provided in intervals of 10 minutes for values below 100 minutes and in intervals of 25 
minutes for values above 100 minutes.  A few observations with durations that exceed 200 are excluded here. 
191 Later on, we also estimate a linear specification where we include locations with zero recurrent congestion (see, column 4 
in Table 5.1). 
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is in line with the data.192 Hence, we assume that the logarithm of non-recurrent congestion, 𝑁𝑅𝐶𝑖,𝑡, at 

location i and time t, depends on the logarithm of recurrent congestion, 𝑅𝐶𝑖,𝑡, the logarithm of incident 

duration, 𝐼𝐷𝑖,𝑡, controls, 𝑋𝑖,𝑡, location fixed effects, 𝑎𝑖, and an error term, 𝑢𝑖,𝑡: 

(5.1) log 𝑁𝑅𝐶𝑖,𝑡 = 𝛽log𝑅𝐶𝑖,𝑡 + 𝛾log𝐼𝐷𝑖,𝑡 + 𝛿𝑋𝑖,𝑡 + 𝑎𝑖 + 𝑢𝑖,𝑡 . 

We are particularly interested in the marginal effect of incident duration on non-recurrent 

congestion. Given the log-log specification, the marginal effect of incident duration is: 

(5.2) 
∂NRCi,t

∂IDi,t
= 𝛾 

𝑁𝑅𝐶𝑖,𝑡

𝐼𝐷𝑖,𝑡
= 𝛾

𝑅𝐶𝑖,𝑡
𝛽𝑧𝑖,𝑡

𝐼𝐷𝑖,𝑡
1−𝛾  

where 𝑧𝑖,𝑡 = exp (𝛿𝑋𝑖,𝑡 + 𝑎𝑖 + 𝑢𝑖,𝑡). Because we will demonstrate that 𝛽 > 0, this implies that the 

marginal effect increases with the level of recurrent congestion, so there is a multiplicative effect of 

incident duration and recurrent congestion.   

We estimate equation (5.1) separately for accidents and non-accidents to allow for the possibility 

of a difference in their determinants. We control for accident severity (e.g. fatality), car type involved 

(e.g. truck) and weather.193 In addition, we include hour of the day, week(-end), month and year 

dummies and also include location fixed effects. For the main results, we use 100m location fixed 

effects for accidents and 1km location fixed effects for non-accidents (we use fewer location fixed 

effects for non-accidents because of fewer non-accidents observations, which allows for sufficient 

degrees of freedom to estimate the effects we are interested in). 

One may argue that incident duration is endogenous because congestion may block road service 

providers and therefore increase incident duration. However, this argument does not apply in the 

Netherlands, because incident management crew and first-response vehicles have access to 

emergency lanes (and may approach incident location in opposite direction of the traffic), which allows 

them to travel unhindered.194 Therefore, reverse causality is not a major concern. 

                                                           
192 We address this specification issue in more detail when discussing the main results (section 5.4.1) and in the  sensitivity 
analyses (section 5.4.2). 
193 Temperature and maximum wind gust in the past hour are recorded hourly at the national level (in a central location of 
the Netherlands). Precipitation is measured within 1km² of the incident location for intervals of 90 minutes (30 minutes before 
and 60 minutes after the incident registration). Furthermore, we construct a dummy for falling snow (the interaction of 
precipitation and temperature below zero degrees Celsius).  
194 They may also travel through the middle of two lanes as cars have opened up space as required by law. 
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We account for two other possible endogeneity problems: omitted variable bias and selection 

bias. First, heterogeneity in location, in terms of number of lanes, and proximity to on- and off-ramps 

may determine non-recurrent congestion. As stated above, we control for this unobserved 

heterogeneity in locations by using location fixed effects. Second, we account for data set selection 

bias with a Heckman correction two-step estimation approach (Heckman, 1979). In the selection 

equation, we use an instrument that directly affects the probability of incident duration being reported, 

but is unlikely to affect non-recurrent congestion directly.195 So, the source that reported the incident 

is used as an instrument that distinguishes between police, incident management personnel and other 

source. One technical difficulty is the large number of location fixed effects because this approach is 

non-linear and cannot be estimated with 4,553 fixed effects. For this reason, when using the Heckman 

correction approach we use 5km location dummies. The Heckman model results are very similar to the 

location fixed effects model that does not correct for selection effects. Hence, we focus on the latter.  

Another issue is measurement error in non-recurrent congestion, causing the incident duration 

effect to be biased. Our measure of non-recurrent congestion is based on the measurement of 

recurrent congestion. It is plausible that recurrent congestion has some measurement error (i.e. the 

median value is not representative for the true value of recurrent congestion). For example, the 

presence of spillbacks and dynamic effects (Fosgerau and Small, 2012), may introduce a bias in the 

measurement of recurrent congestion, and subsequently in non-recurrent congestion. We investigate 

this issue in the sensitivity analysis (5.4.2), by estimating the model without controlling for recurrent 

congestion. For this specification, we arrive at an almost identical incident duration effect. Hence, the 

bias due to measurement error in non-recurrent congestion is likely negligible. 

 

5.4 Main results 

Table 5.2 shows the main results. For accidents, the incident duration elasticity of non-recurrent 

congestion is 0.43, see column (1). In other words, a 1% increase in incident duration increases non-

recurrent congestion by 0.43%.  This estimate implies that an incident duration increase of one minute 

(about two percent of the mean duration) results on average in an increase in non-recurrent congestion 

                                                           
195 Hence, the source that reported the incident is assumed to be independent of non-recurrent congestion (conditional on 
controls), but the source affects the probability that the incident duration is reported in our data. 
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of 3.95 VLH (0.88 percent of the mean non-recurrent congestion).196 Assuming a VLH monetary value 

of €20, which is in line with the literature, this implies that one minute of incident duration costs about 

€79.197  

 

Table 5.2 – Regression results for non-recurrent congestion of accidents and non-accidents  

 (1)  (2) 

 Accidents  Non-accidents 

 Coefficient Standard error 
 

Coefficient 
Standard 

error 

Incident duration (log) 0.429 *** 0.039  0.317 *** 0.045 

Recurrent congestion (log) 0.252 *** 0.016  0.303 *** 0.021 

Injury and Fatality 0.055  0.095     

Material Damage (severe) 0.039  0.056     

Passenger car 0.101  0.063  -0.028  0.068 

Truck -0.033  0.063  -0.052  0.088 

Motorcycle 0.216  0.183  0.270  0.343 

Snow  -0.379  0.669  1.279 *** 0.469 

Max. wind gust (in m/sec) 0.005  0.008  -0.009  0.010 

Rain (in mm/hour)  
0 to 2.5 

0.098  0.070 
 

0.262 *** 0.075 

Above 2.5 -0.407  0.245  0.631 ** 0.274 

Temperature  (in degree Celsius) 
0 to 10 

-0.161  0.147 
 

-0.007  0.157 

10 to 20 -0.115  0.167  0.169  0.189 

Above 20 -0.265  0.190  0.177  0.219 

Location-fixed-effects 100m  1km 

Year, month, hour and weekday of 
observation 

Included  Included 

R2 within 0.3327  0.2953 

R2 overall 0.2808  0.2290 

Number of fixed-effects 4,553  1,139 

Number of observations 6,506  2,788 

Note: The logarithm of non-recurrent congestion is the dependent variable. ***, **,* imply 1, 5, 10% significance levels. 
Standard errors are robust.  

 

                                                           
196 To be more precise, when incident duration increases by one minute (2.0467% of 48.7 minutes average incident duration) 
non-recurrent congestion increases by 0.8780% = (2.0467*0.429) of average 449.6 VLH which is 3.9475VLH. 
197 There is a range of monetary values of travel time in the literature, see, for example, Calfee and Winston (1998) and Lam 
and Small (2001). Given an average occupancy of 1.6 persons per car, we implicitly use a value of time of €12.5 per person. 
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For non-accidents, this elasticity is 0.32, see column (2), so about one-third lower than for 

accidents. Hence, one minute increase in non-accident duration leads to an increase of 2.49VLH, 

equivalent to €50.198 Despite this difference, it appears that the elasticities of the accident and non-

accident specification are not different at the 5% significance level (t=1.88). So, for our welfare 

calculations, we will not distinguish between the durations effects of accidents and non-accidents.199 

Similarly, the estimated recurrent congestion elasticities for accidents and non-accidents are almost 

identical (0.25 and 0.30 respectively, 𝑡 = 1.93).  

Because the incident duration elasticities of non-recurrent congestion for accidents and non-

accidents are not statistically different, we use the weighted average of 0.343, i.e. €57 for a one minute 

reduction.200 Our results imply that there are substantial benefits of reducing incident duration. For 

example, the (unit value) benefit of a one minute reduction in incident duration applied to all 135,000 

annual incidents implies a decrease in non-recurrent congestion cost of almost €8 million.201  

The results in Table 5.2, and the results in the sensitivity analyses, imply that the effect of incident 

duration on non-recurrent congestion is concave (consistent with Figure 5.4).202 In other words, we find 

a decreasing marginal effect of incident duration on non-recurrent congestion, i.e. an elasticity below 

one. Hence, the marginal effect is the highest just after the incident occurs and becomes less for longer 

durations. 203 One possible reason for this concave effect is the effect of traffic information, rerouting 

and other incident management activities. For example, dissipation of traffic information about the 

incident-induced non-recurrent congestion to road participants may result in a decrease of inflow of 

                                                           
198 One minute of 46.1 minutes is 2.17%. Multiplying 2.17*0.317%*367.1VLH = 2.49VLH. A 2.49 VLH increase in non-recurrent 
congestion per minute is worth €50.  
199 Accidents are a small part of overall incidents but the main cause of non-recurrent congestion, according to Jones et al. 
(1991). In our case, because of the larger share of non-accidents and the similar elasticities, we arrive at the opposite 
conclusion.   
200 There are roughly 100,000 non-accidents and 35,000 accidents in the Netherlands annually (Snelder et al., 2013). We use 
the accident/non-accident ratio to construct a weighted incident duration elasticity, 0.343, weighted averages for non-
recurrent congestion, 388.5VLH, and incident duration, 46.7 minutes, from (1) and (2) in Table 5.1. Hence, the value of one 
minute duration is (100/46.7*0.343%*388.5VLH*€20) = €57. Results would be identical for the full data set when we assume 
7.3 minutes average incident duration.   
201 We obtain the congestion reduction value of one minute duration for all 135.000 incidents by multiplying with the weighted 
average value of a one minute reduction, €57 arriving at €7.7 million. Results might differ when incident duration for all 
incidents would be available for calculation and also, when we would consider a minute reduction not around the average, 
but reducing the minute from each individual incident overall time.  
202 For a discussion of the results of polynomial and semi parametric estimation see the sensitivity analyses in section 5.4.2 
We have also estimated models with a flexible dummy specification of incident duration. These models also show that the 
effect is concave.  
203 For example, the marginal effect of incident duration of accidents at 30 minutes is 6.4. At 48.7 minutes it is 3.96, and at 70 
minutes it is 2.75. 
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cars. Other examples include, incident management personnel clearing the road, thereby restoring 

road capacity, better assessment of incident situation translating in better road management (i.e. 

speed reduction).204 It might be that without (or with different) incident management policy and/or 

traffic information systems (i.e., in other countries), this effect is linear or even convex. For example, 

economic theory suggests that in a stylized case without rerouting and inelastic demand for travel, 

there is a quadratic effect of incident duration of non-recurrent congestion (Hall, 1993; Koster and 

Rietveld, 2011) suggesting that the elasticity would be 2 rather than values around 0.40 as reported by 

us. Theory might be improved by, for example, allowing incomplete closure of lanes, restoration of 

traffic capacity over incident duration (e.g., through incident management) and incident responsive 

traffic demand.   

We emphasize that (above) we report the average benefit value of an incident duration 

reduction and the value strongly depends on the level of recurrent congestion, because of the 

multplicative effect with incident duration (see equation (5.2)). Therefore, the benefit of a reduction at 

a location with a larger recurrent congestion is much larger. For example, in our data, the average level 

is 100 VLH. At locations with 2000 VLH of recurrent congestion, our estimates imply that non-recurrent 

congestion is, on average, 2.1 times higher than the given average levels of non-recurrent congestion, 

implying that the marginal benefit of reducing incident duration is 2.1 times higher (€134) than the 

average.205 Therefore, Incident Management policies should prioritize locations according to recurrent 

congestion to minimize non-recurrent congestion costs.206  

We have noticed above that at more congested locations the benefit of a reduction in the 

incident duration is larger (as implied by the specification in logarithms). However, it is also plausible 

that the effects of logarithm recurrent congestion and logarithm incident duration interact. We address 

this issue for accidents. The results are reported in (1) of Table 5.3. We find a slight positive interaction 

effect but it is only significant at a 10% significance level. 

Another way to address this issue is by excluding the large number of locations where recurrent 

congestion levels are low. Therefore, we re-estimate the model for accidents at locations with 

                                                           
204 One can imagine that heavier incidents with longer durations trigger a stronger response from incident management crews 
reducing non-recurrent congestion. This interpretation is however conflicting with our result that incident characteristics and 
severity do not play a significant role in explaining non-recurrent congestion. 
205 Note that (2000/100)0.252 = 2.1. 
206 After 2009 this has been acknowledged by RWS (Immers and Landman, 2008), where incident management crews response 
times are required to be less for locations with high levels of recurrent congestion. 
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recurrent congestion above 5VLH (62% of our observations). The accident duration and recurrent 

congestion elasticities both increase by roughly 20%, as shown in column (2). This is consistent with the 

small positive interaction effect reported in column (1).  

 

Table 5.3 – Regression results for non-recurrent congestion of accidents 

 (1)  (2)  (3) 

 
 Interaction incident duration 

and recurrent congestion 
 

Recurrent congestion > 5 VLH 
 Recurrent congestion > 100 

VLH 

 Coefficient 
Standard 

 error 
 

Coefficient 
Standard  

error 
 

Coefficient 
Standard  

Error 

Incident duration (log) 0.363 *** 0.059  0.491 *** 0.048  0.378 *** 0.090 

Incident duration 
(log)*recurrent 
congestion(log) 

0.025 * 0.014 

 

  
 

 

   

Recurrent congestion (log) 0.160 *** 0.053  0.325 *** 0.030  0.575 *** 0.092 

Injury and Fatality 0.062  0.094  0.064  0.114  0.153  0.165 

Material Damage (severe) 0.037  0.056  0.034  0.066  0.236 * 0.132 

Passenger car 0.106 * 0.063  0.052  0.070  0.023  0.135 

Truck -0.033  0.092  -0.050  0.101  0.065  0.188 

Motorcycle 0.209  0.183  -0.084  0.192  -0.465  0.269 

Snow  -0.366  0.675  0.275  0.361  0.375  0.592 

Max. wind gust (in m/sec) 0.005  0.008  -0.002  0.009  -0.002  0.017 

Rain (in mm/hour) 
0 to 2.5 

0.101  0.070 
 

0.123  0.077 
 

0.010  0.132 

Above 2.5 -0.408 * 0.244  0.253  0.221  0.048  0.250 

Temperature (in degree 
Celsius) 
0 to 10 

-0.157  0.150  -0.188  0.181  0.008  0.223 

10 to 20 -0.128  0.166  -0.169  0.203  -0.111  0.278 

Above 20 -0.278  0.189  -0.369  0.234  -0.374  0.324 

Location-fixed-effects 100m  100m  100m 

Year, month, hour and 
weekday of observation 

Included  Included  Included 

R2 within  0.3342  0.2686  0.3636 

R2 overall 0.2836  0.1818  0.1339 

Number of fixed-effects 4,553  2,842  1,200 

Number of observations 6,506  3,992  1,499 

Note: In all three models, the logarithm of non-recurrent congestion is the dependent variable. ***, **,* imply 1, 5, 10% 
significance levels. All standard errors are robust. 

 

Further evidence of this is provided in (3) of Table 5.3 where we restrict the data to congested 

locations with recurrent congestion above the average value of 100 VLH. The recurrent congestion 

elasticity doubles to 0.575, but the incident duration elasticity remains similar to the original estimate 

(see (1) of Table 5.2). Therefore, the incident duration elasticity is robust over different data set 
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selections and over different model specifications, whereas the recurrent congestion elasticity is larger 

for congested locations. According to (3) in Table 5.3 at very congested locations (with 4000 VLH of 

recurrent congestion), the marginal effect of incident duration is 8.3 times larger than the marginal 

effect where the recurrent congestion is equal to the average, so a one minute duration costs about 

€1200.207 This reinforces our conclusion that Incident Management policies should prioritize those 

congested locations. Note that our estimate is low in comparison to the $2000 of Garrison and 

Mannering (1990) who also focus on congested locations but who consider a major urban highway with 

a severe incident that reduces capacity by 75% during rush hour. Our €1200 refers to the average effect 

of incident duration for congested locations, irrespective of the numbers of lanes closed and 

irrespective of the hour of the day. 

Non-recurrent congestion is not the only component of incident welfare losses. Another 

component is time loss due to rerouting. In case the incident duration is long and congestion levels are 

high, so expected time loss in the queue is long, it may be beneficial for drivers to make a detour that 

increases their travel time costs but reduces their time in the queue. 208 In our data, drivers’ average 

delay in the queue is 18% to 25% of incident duration (because most of the time not all lanes are 

closed).209 Hence, it is plausible that drivers make only a detour for very long incident durations (i.e. 

longer than an hour).  

The additional costs of an incident vary with the number of road users who make a detour, 

which depends on the availability of route alternatives (e.g., a link to another highway) and information 

to the road user about the occurrence of the incident. According to the Wardrop (1952) principle, when 

drivers are well-informed, a certain proportion of drivers decide to make a detour so that in the end 

the travel time for those who stay in the queue and those who make a detour is the same.210 In the 

Netherlands, around 20% of road users choose to detour if they have been informed on a delay of one 

                                                           
207 For congested locations (recurrent congestion above 100VLH), incident duration is 44.15 minutes and non-recurrent 
congestion 830.93VLH on average. Using the duration elasticity 0.378 for 1 minute (2.26%) we arrive at 7.114VLH, with the 

multiplicative effect of recurrent congestion of 8.3 = (4000/100)0.575 is €1180.96. 
208 The average distance between two highways is 13.2km for the most frequented urban area (i.e. Randstad). In the 
Netherlands, highways have predominantly replaced the pre-existing provincial road network, so usually taking a detour on 
another highway is the only reasonable alternative. If road users choose the route alternative that minimizes (expected) travel 
time, the detour time has to be equal to or less than, the congestion delay. So only for very long incident duration drivers 
consider detours. 
209 This is calculated as follows. For incidents longer than one hour the non-recurrent congestion average is 880VLH. The 
drivers delay is then between 880/4800=18% (for a four-lane highway with 4,800 vehicles per hour) and 880/3600=25% (for 
a three-lane highway with 3,600 vehicles per hour) at congested locations. 
210 Note that by making the detour, the latter reduce the waiting time of those who continue to wait in the queue. 
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hour (Peer, 2013). The results by Emmerink et al. (1996) suggest a similar percentage. Assuming this 

percentage to be true, we may underestimate the total welfare loss (i.e. the sum of non-recurrent 

congestion and detour time costs) by up to 25% at very congested locations with long incident 

durations. So, on average, detour time cost adds much less than 25% to the overall welfare costs.211 

Note that in addition to rerouting there are other behavioural responses such as rescheduling of 

activities that imply welfare losses that are not included here. 

Incident characteristics (e.g. injury, truck involved) are an explanatory factor of incident duration, 

as shown, for example by Guiliano (1989) and Nam and Mannering (2000).212 When controlling for 

100m location fixed effects and incident duration the effect of accident characteristics is insignificant. 

Therefore, incident duration is the important factor in explaining non-recurrent congestion and 

captures the effects of the other accident characteristics - vehicle type and severity. However, when 

using less location fixed effects or not controlling for fixed effects some of the accident characteristics 

become significant. Weather conditions do not seem to affect accident non-recurrent congestion, but 

precipitation increases non-recurrent congestion of non-accidents.213  

 

5.5 Sensitivity Analyses 

We conduct several sensitivity analyses of the results. We focus here on the accidents for which we 

have more observations. First, we increase the location-fixed-effects group variable to 1km (see Table 

5.4, (1)) as well as to 5km (Table 5.A2, (2) in the Appendix), and estimate models without controlling 

for location fixed effects (see Table 5.4, (2)).214 The effects of incident duration and recurrent 

congestion are very similar in size with those discussed before. So, our main results are not sensitive to 

the inclusion and specification of fixed effects. 

                                                           
211 Of the 100% of drivers affected by an incident, 80% do not change route and 20% make a detour. Using the Wardrop 
principle, the travel time loss of the group that changes route is 20/80=25% of the group that does not change route. This 
would imply an extra welfare loss of 25%. 
212 We also estimated the effect of incident characteristics on non-recurrent congestion without including incident duration. 
The effects of many characteristics become then significant (results are not shown here). We also estimated models on 
incident duration as a function of incident characteristics, time of day, week, month, year and weather. These results are 
similar to those found in Vukovic et al. (2013). 
213 For example, the presence of snow strongly increases non-recurrent congestion. The effect of snow and heavy rain between 
recurrent and non-recurrent congestion cannot be disentangled here because we do not observe the weather for recurrent 
congestion. 
214 The location precision level decrease may result in introducing unobserved heterogeneity bias. For example, a 1km road 
segment with an on- and off-ramp in front of the accident could change the resulting non-recurrent congestion because of 
the possibility of re-routing. Also, incident clearance, number of lanes, and other factors could be non-homogenous in space. 
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Table 5.4 – Sensitivity Analysis- Non-recurrent congestion of accidents 
 (1)  (2)  (3) 

 1km location  No location control   Recurrent congestion not 
included 

 Coefficient 
Standard 

error 
 

Coefficient 
Standard 

error 
 

Coefficient 
Standard 

error 

Incident duration (log) 0.406 *** 0.028  0.370 *** 0.027  0.447 *** 0.043 

Recurrent congestion (log) 0.236 *** 0.113  0.204 *** 0.007     

Injury and Fatality 0.161 *** 0.059  0.150 *** 0.058  0.011  0.102 

Material Damage (severe) 0.109 *** 0.037  0.115 *** 0.037  0.067  0.060 

Passenger car 0.090 ** 0.043  0.239 *** 0.042  0.115  0.071 

Truck 0.065  0.061  0.102 * 0.057  -0.049  0.102 

Motorcycle 0.255 ** 0.111  0.202 * 0.118  0.360 * 0.199 

Snow  -0.043  0.474  0.433  0.462  -0.512  0.707 

Max. wind gust (in m/sec) 0.007  0.006  0.005  0.005  0.001  0.008 

Rain (in mm/hour) 
0 to 2.5 

0.096 ** 0.042 
 

0.082 ** 0.041 
 

0.135 * 0.076 

Above 2.5 -0.436 ** 0.022  -0.399 * 0.217  -0.435  0.300 

Temperature (in degree 
Celsius) 
0 to 10 

-0.434  0.104 

 

0.018  0.104 

 

-0.246  0.168 

10 to 20 0.020  0.113  0.083  0.115  -0.189  0.190 

Above 20 -0.119  0.126  0.014  0.129  -0.226  0.214 

Location-fixed-effects 1km  Not included  100 meters 

Year, month, hour and 
weekday of observation 

Included  Included  Included 

R² (within) 0.3217  0.3167  0.1915 

R2 overall 0.3066    0.1397 

Number of fixed-effects 1,680    4,553 

Number of Observation 6,506  6,506  6,506 

Note: In all three models, the logarithm of non-recurrent congestion is the dependent variable. ***, **,* imply 1, 5, 10% 
significance levels. Standard errors are robust. 

 

Second, for the Heckman correction model (see (1) of Table 5.A2, in the Appendix), the 

elasticities of incident duration and recurrent congestion are almost identical to the results dicsussed 

above. It also appears that our instrument is highly statistically significant and has the expected effect 

on the probablitiy of reporting incident duration.215 We find that when the police is the source of 

reporting the duration is more likely to be reported. One possible explanation is that when the police 

reports the incident to the traffic control regional office, traffic measures (e.g., speed reduction) are 

more likely to be applied, which increases the probability that incident duration is observed and 

                                                           
215 A F-test indicates that the instrument is jointly significant at the 1% level. Our results are robust to different instrument 
specifications with other incident reporting sources, such as: fire department, traffic participants and towing companies.     
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recorded. In contrast, when incident management crews are the first to report the incident, the 

duration might not be recorded because the crew is busy dealing with the incident and does not request 

traffic measures.  

 Third, we re-estimate the model not controlling for recurrent congestion. The results ((3) in 

Table 5.4) show that the incident duration elasticity estimate is then biased upwards. Therefore, 

controlling for recurrent congestion is important to obtain consistent estimates of the incident duration 

effect on non-recurrent congestion.   

Fourth, we re-estimate the model for a quadratic specification of incident duration (no 

logarithms). We do this for the data set that excludes and for the data set that includes recurrent 

congestion observations that are zero (the descriptives are reported in (1) and (3) of Table 5.1). For the 

former, the point estimate of incident duration of accidents equals 4.630 and the point estimate of its 

square is -0.004. For the latter, the point estimate equals 3.677 and the point estimate of its square is 

-0.003 (these coefficients are all significant at the 1% significance level). The marginal effects of accident 

duration are then 4.238 and 3.389 respectively (evaluated at the mean values). This translates to an 

accident duration elasticity of non-recurrent congestion of 0.47 and 0.38 respectively, which is similar 

to the results reported in Table 5.2. Moreover, we re-estimate a semi-parametric specification of the 

model where the incident duration function is captured by means of three linear splines. The estimated 

decreasing marginal effect substantiates our choice of a log specification of incident duration.216 

Therefore, our result that incident duration has a concave effect on non-recurrent congestion is robust 

over different specifications and data selections. 

 

5.6 Conclusion 

Our estimates show that incident duration substantially increases the level of non-recurrent congestion 

on highways. The incident duration elasticity of non-recurrent congestion is about 0.35 and similar for 

accidents and non-accidents. This implies that one marginal minute incident duration costs about €57 

per incident. The annual economic value of one marginal minute incident duration reduction is then 

about €8 million for the Netherlands. In addition, we show that the marginal effect of incident duration 

                                                           
216 The 0 to 45 minutes incident duration spline coefficient is 0.019, the 45 to 90 minutes coefficient is 0.0050 and the 
coefficient above 90 minutes is equal to 0.00037. 
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on non-recurring congestion is diminishing. Therefore, incident management policies should focus on 

reducing all durations, not in particular the longer ones. 

 Furthermore, recurrent congestion has a strong positive effect on non-recurrent congestion. 

Recurrent congestion and incident duration have a multiplicative effect on non-recurrent congestion. 

This implies that incident management policy should focus on locations with larger recurrent 

congestion levels, because there the reduction in incident duration has a larger impact. For very 

congested locations the marginal cost of one minute duration is about €1200 per incident. Including 

other aspects of incident management policies in the future research, such as the type of road 

measures applied, may increase our understanding of the effect of incident management on welfare. 
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Appendix 5.A 

Figure 5.A1 − National Dutch highway network Figure 5.A2 − Traffic flow data          

    

National Dutch highway network where the 
areas with high levels of recurrent 
congestion between urban centers is grey. 

 Highway specific traffic flow data with precipitation (crosses) and 
incident (dotted circle). Time of day on horizontal axis (10-minute 
intervals) and distance on vertical axis (500 meter intervals). 
Speed reduction increase in shades of grey. 

Source: Vukovic et. al., 2013                                      

 

Table 5.A1 − Recurrent congestion matrix 
 Time in Weeks 

-4 -3 -2 -1  +1 +2 +3 +4 

Weekdays     Monday     

    Tuesday     

    Wednesday     

    Thursday     

Friday Friday Friday Friday 

weighted  

Friday (F) Friday 

weighted 

Friday Friday Friday 

    Saturday     

    Sunday     

Note: Here, the incident is on a Friday (in grey). Recurrent congestion values of the Friday one week before and after the 
incident receive a weight of two. The non-recurrent congestion on the incident Friday is excluded in the calculation of 
recurrent congestion.  
 
  



0   Appendix 5.A 

127 
 

Table 5.A2 − Heckman selection model for logarithm of accident non-recurrent congestion  
  (1)  (2) 
  Heckman  Standard 
 

 Coefficient Standard error 
 

Coefficient 
Standard 

error 

Lo
ga

ri
th

m
 n

o
n

-r
ec

u
rr

en
t 

co
n

ge
st

io
n

  

Incident duration (log) 0.388 *** 0.023  0.388 *** 0.024 

Recurrent congestion (log) 0.228 *** 0.011  0.221 *** 0.006 

Injury and Fatality 0.281  0.200  0.157 ** 0.055 

Material Damage (severe) 0.200  0.124  0.124 ** 0.037 

Passenger car 0.230 ** 0.071  0.191 *** 0.039 

Truck 0.192 ** 0.097  0.139 ** 0.055 

Motorcycle 0.265 * 0.148  0.206 ** 0.120 

Snow  0.155  0.295  0.086 ** 0.041 

Max. wind gust (in m/sec) 0.005  0.005  0.005  0.001 

Rain (in mm/hour) 
0 to 2.5 0.101 ** 0.041 

 
0.086 ** 0.041 

Above 2.5 -0.492  0.171  0.005  0.005 

Temperature (in degree 
Celsius) 
0 to 10  0.029  0.095 

 

0.030  0.096 

10 to 20 0.118  0.105  0.108  0.107 

Above 20 0.038  0.120  0.041  0.121 

Location-fixed-effects 5km  5km 

Year, month, hour and 
weekday of observation 

Included  Included 

Se
le

ct
io

n
 -

 in
ci

d
e

n
t 

d
u

ra
ti

o
n

 r
ep

o
rt

ed
 

Recurrent congestion (log) 0.047 *** 0.003     

Injury and Fatality 0.930 *** 0.035     

Material Damage (severe) 0.546 *** 0.021     

Passenger car 0.254 *** 0.029     

Truck 0.378 *** 0.029     

Motorcycle 0.436 *** 0.074     

Snow  -0.381  0.135     

Max. wind gust (in m/sec) 0.002  0.003     

Rain (in mm/hour) 
0 to 2.5 -0.059 *** 0.021 

    

Above 2.5 -0.210 ** 0.083     

Temperature (in degree 
Celsius) 
0 to 10 0.052  0.050 

    

10 to 20 0.081 ** 0.056     

Above 20 0.120 ** 0.064     

Report police (instrument) 0.084 *** 0.024     

Report Incident 
Management (instrument) -0.206 *** 

0.037 
    

Location-fixed-effects 5km   

Year, month, hour and 
weekday of observation 

Included   

 Sigma 1.200     
 Rho 0.156     
 Lambda 0.188 0.293    
 Number of observations 34,524   6,506  

Note: In both models the logarithm of non-recurrent congestion is the dependent variable. Standard errors are robust. ***, 
**, * imply 1, 5, 10% significance levels. Rho is the correlation between the error terms of the two models. Sigma is the natural 
log of the standard error of the residual of the non-recurrent congestion equation. Note, Lambda equals Rho*Sigma.   
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6 Conclusion 

6.1 Estimation results 

The economics of road transport is at the core of this thesis. Throughout the chapters we demonstrated 

that road congestion is an economic problem with large cost to society and henceforth worthy of 

scientific research. We focus on measuring the cost of congestion to car users (Chapter 2 and 3) and to 

bus users (Chapter 3). Then we measure the benefits of public transit provision (Chapter 2 and 4) and 

incident management (Chapter 5).   

We are interested in the social (i.e. marginal external) cost of congestion which requires us to 

estimate the effect of vehicle flow on travel time in Chapters 2 and 3. Since this effect is not trivial to 

estimate for hours when car travel exceeds road capacity ─ during hypercongestion, i.e. when the road 

supply curve is backward bending ─ we estimate travel time as a function of vehicle density. Vehicle 

flow and density are not necessarily exogenous because of reverse causality and measurement error. 

Therefore, we demonstrate that the use of exogenous and correlated instruments such as public transit 

share, bicycle flow and hour-of-weekday dummies are suitable to account for endogeneity. We obtain 

consistent and unbiased estimates of the road supply curve. The estimated function closely mimics the 

data and provides a functional form in line with the fundamental diagram of traffic and stationary-state 

congestion theory. The method is well suited for data in inner cities and on highways in Rome (Chapter 

2) and Rotterdam (Chapter 3) as well as for a broad range of temporal and spatial aggregation.  

We demonstrate how these estimates of the road supply curve can be used to obtain the 

marginal external time cost of vehicle travel. We demonstrate that, for the city of Rome, the marginal 

external cost of congestion is substantial: it is, on average, at least as large as half of private travel time 

cost, while reaching considerably higher levels during peak hours. Further, we found that an increase 

in road congestion from cars induces a travel time loss for bus travelers sharing the same road. About 

one third of the marginal external cost of road congestion in Rome is borne by bus travelers. 

Public transit can help reduce road congestion. We measure the benefits of public transit by 

estimating the effect of multiple public transit strikes on car travel time losses for inner city roads and 

highways of Rome (chapter 2) and Rotterdam (chapter 4). These quasi-natural experiments ─ strikes ─ 

allow us to determine the congestion relief benefit, i.e. the monetary value of a reduction in car 

congestion due to public transit provision. We find substantial benefits of public transit on travel time 

of cars users for both cities. The benefits are larger for hypercongested roads and during peak hour 
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traffic. Further study of long-run effects is recommended as our estimates of the congestion relief 

benefit of public transit are not necessarily representative of the long-run since car ownership and 

location decisions of households and firms are not fully accounted for.  

Traffic incidents can be a cause of congestion. We demonstrate that incident duration 

contributes to non-recurrent congestion on highways. The incident duration elasticity of non-recurrent 

congestion is about 0.35 and similar for accidents and non-accidents. This implies that one marginal 

minute incident duration costs about €57 per incident. The annual economic value of one marginal 

minute incident duration reduction is then about €8 million for the Netherlands. In addition, we show 

that the marginal effect of incident duration on non-recurring congestion is diminishing. Furthermore, 

recurrent congestion has a strong positive effect on non-recurrent congestion. Recurrent congestion 

and incident duration have a multiplicative effect on non-recurrent congestion. 

 

6.2 Policy recommendations 

Our findings support a range of policies aimed at congestion reduction. For example, the high relevance 

of hypercongestion suggests that road pricing or the use of quantitative measures to curb traffic on 

heavily congested roads (e.g., through adaptive traffic lights, parking fees) may be warranted (Fosgerau 

and Small, 2013; Van Ommeren et al., 2014). Our findings suggest that separate lanes for buses might 

be a priority in Rome, as road congestion has a strong effect on travel time delays of buses (Basso and 

Silva, 2014; Börjesson et. al, 2016). 

 Public transit provision is a widely-accepted policy measure to reduce road congestion. The 

level of public transit provision and therefore the level of subsidies to public transit are subject of 

debate in many countries (e.g. Parry and Small, 2009; Anderson, 2014). Our main finding is that the 

congestion relief benefit is substantial and about half of the public transit operating cost, equivalent to 

about 80% of public transit subsidies. Consequently, this indicates that for Rotterdam, and likewise for 

other cities that are mildly congested, substantial subsidies to public transit are economically justified. 

This is even more true for highly congested cities such as Rome. 

Our results for Rome also support policies aiming at reducing road congestion through an 

increased supply of public transit. We find that public transit – which has a modal share of 28% in Rome 

– reduces travel time of motor vehicles on average by 15 percent in the morning peak. We further show 

that the marginal congestion relief benefit of public transit provision does not vary with the level of 
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public transit supply. In light of the significance of the congestion-relief effect, the current level of 

subsidies, which is about 75 percent of the operational costs in Rome, is justified and should possibly 

be even increased. 

An alternative second-best policy to reduce congestion is to subsidize the use of bicycles. We 

show for Rotterdam that the increase in bicycle users is about equal to the increase in car travelers, on 

a strike day. This may be a typical result for a city in a country that is well known to have above-average 

bicycle use, nevertheless, this finding supports the claim that bicycle-promoting policies (such as bicycle 

lanes) may be a cost-effective way of reducing car travel time losses from recurrent congestion. 

Incident duration substantially increases the level of non-recurrent congestion on highways. We 

show that the marginal effect of incident duration on non-recurring congestion is diminishing. 

Therefore, incident management policies should focus on reducing all durations, not in particular the 

longer ones.  Furthermore, recurrent congestion has a strong positive effect on non-recurrent 

congestion. Recurrent congestion and incident duration have a multiplicative effect on non-recurrent 

congestion. This implies that incident management policy should focus on locations with larger 

recurrent congestion levels, because there the reduction in incident duration has a larger impact. For 

very congested locations the marginal cost of one minute duration is about €1200 per incident. 

 

6.3 Future research and outlook 

This thesis provides ample basis for policy and future research. The methodology we introduce to 

estimate road supply curves is suitable to inform decision makers on the national and local level about 

congestion costs and to update road supply curves currently in use in traffic simulations. The marginal 

external congestion cost from the methodology proposed here can be compared to the marginal 

external congestion cost from other methodologies and using data for an entire road network. Since 

the marginal external costs are an essential input to transport policy decisions making, it is possible to 

(re-)evaluate policy decision about public transit provision, bicycle and bus lanes as well as parking fees.

  

We provide evidence that public transit subsidies are welfare improving for a medium and a large 

city and that further subsidies can increase welfare even further. Policy makers might benefit from 

research that helps to prioritize between; e.g. increasing transit supply and quality or reducing transit 

prices. We focus predominantly on benefits of public transit on the intra-city level, whereas the benefits 
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for inter-city level are also highly relevant for decisions such as investments into the rail network. An 

empirical study about the interaction between congestion reduction policies might also be of interest. 

In the next decades, the road transport sector is likely to undergo fundamental transformations. 

The advent of autonomous vehicles and the better use of information for mobility services will provide 

gains in travel time, reliability and travel comfort. The associated reductions in travel costs will most 

likely result in more frequent and longer travel. Some of the results of the thesis, such as methodology 

to measure road supply curves and the marginal external congestion cost will continue to apply. Other 

results, such as the road supply curve themselves might change, for example, due to reductions in 

safety distance from car connectivity. The discussion about the costs and benefits of public 

transportation are likely to further intensify (Adler et al., 2018b) and our contributions hopefully 

manage to aid this discourse.  



 

133 
 

Bibliography 

Adler, M. W. & van Ommeren, J. N. (2016). Does public transit reduce car travel externalities? Quasi-
natural experiments’ evidence from transit strikes. Journal of Urban Economics, 92, 106-119. 

Adler, M. W., & Ahrend, R. (2017). Traffic Safety in Korea: Understanding the Vulnerability of Elderly 
Pedestrians. OECD Publishing. 

Adler, M. W., and van Ommeren, J. N. (2015) Does public transit reduce car travel externalities? Quasi-
natural experiments’ evidence from transit strikes. TI discussion paper series, TI 2015-011/VIII. 

Adler, M. W., Pasidis, I., Levkovich, O. & Lembcke, A. C. (2018a). Roads, market access and regional 
economic development. OECD Publishing. 

Adler, M. W., Peer, S. & Sinozic, T. (2018b). Autonomous, connected, electric and shared vehicles (ACES) 
and public finance. 

Adler, M. W., van Ommeren, J. N., & Rietveld, P. (2013). Road congestion and incident 
duration. Economics of Transportation, 2(4), 109-118. 

Adler, M. W.; Liberini, F.; Russo, A.; van Ommeren, J. N. (2017). Road congestion and public transit. ITEA 
Conference Working Paper.  

Aftabuzzaman, M., Currie, G., & Sarvi, M. (2010). Evaluating the congestion relief impacts of public 
transport in monetary terms. Journal of Public Transport, 13(1), 1-24. 

Akbar, P.A. & Duranton, G. (2016). Measuring congestion in a highly congested city: Bogota’. Mimeo. 
Akcelik, R. (1991). Travel time functions for transport planning purposes: Davidson's function, its time 

dependent form and alternative travel time function. Australian Road Research, 21(3). 
Aljanahi, A. A. M., Rhodes, A. H., & Metcalfe, A. V. (1999). Speed, speed limits and road traffic accidents 

under free flow conditions. Accident Analysis & Prevention, 31(1), 161-168. 
Alonso, W. (1964). Location and Land Use: Toward a General Theory of Land Rent. Harvard University 

Press, Cambridge. 
Anas, A., & Lindsey, R. (2011). Reducing urban road transportation externalities: Road pricing in theory 

and in practice. Review of Environmental Economics and Policy, req019. 
Anderson, M. L. (2014). Subways, strikes and slowdowns: the impacts of public transit on traffic 

congestion. American Economic Review, 104(9), 2763-2796. 
Anderson, M. L., & Auffhammer, M. (2014). Pounds that kill: The external costs of vehicle weight. The 

Review of Economic Studies, 81(2), 535-571. 
Angrist, J. D., & Krueger, A. B. (2001). Instrumental Variables and the Search for Identification: From 

Supply and Demand to Natural Experiments. The Journal of Economic Perspectives, 15(4), 69-
85. 

Arnott, R. & Inci, E. (2006). An integrated model of downtown parking and traffic congestion. Journal 
of Urban Economics, 60(3), 418-442. 

Arnott, R. & Inci, E. (2010). The stability of downtown parking and congestion, Journal of Urban 
Economics, 68, 3, 260-276. 

Arnott, R. & Small, K. (1994). The economics of traffic congestion. American Scientist, 82(5), 446-455. 
Arnott, R. (2013). A bathtub model of downtown traffic congestion. Journal of Urban Economics, 76, 

110-121. 
Arnott, R., De Palma, A., & Lindsey, R. (1988). Schedule delay and departure time decisions with 

heterogeneous commuters. Transportation Research Record (1197), 56-67. 
Arnott, R., De Palma, A., & Lindsey, R. (1993). A structural model of peak-period congestion: A traffic 

bottleneck with elastic demand. The American Economic Review, 161-179. 



 

134 
 

ATAC SpA (2013). Carta Generale dei Servizi. Rome. 
Basso, L. J., & Silva, H. E. (2014). Efficiency and substitutability of transit subsidies and other urban 

transport policies. American Economic Journal: Economic Policy, 6(4), 1-33. 
Bauernschuster, S., Hener, T., & Rainer, H. (2016). When labor disputes bring cities to a standstill: The 

impact of public transit strikes on traffic, accidents, air pollution, and health. American 
Economic Journal: Economic Policy, forthcoming. 

Baum-Snow, N. (2010). Changes in transportation infrastructure and commuting patterns in US 
metropolitan areas, 1960–2000. The American Economic Review, 100(2), 378. 

Baum-Snow, N., Henderson, J. V., Turner, M., Brandt, L., & Zhang, Q. (2015). Transport infrastructure, 
urban growth and market access in China. Presented at ERSA conference 2015. 

Becker, G. S. (1965). A theory of the allocation of time. The economic journal, 493-517. 
Beckmann, M. J., McGuire, C. B. & Winsten, C. B. (1956). Studies in the Economics of Transportation. 

Oxford University Press, Oxford. 
Behrens, C., & Pels, E. (2012). Intermodal competition in the London–Paris passenger market: High-

Speed Rail and air transport. Journal of Urban Economics, 71(3), 278-288. 
Bell, R. C. & Vibbert, R. L. (1990). Mathematical correction of axle undercounting in pneumatic tubes 

traffic survey. ITE Journal, 60(2). 
Bennett, C. R., De Solminihac, H., & Chamorro, A. (2006). Data Collection Technologies for Road 

Management (No. 11776). The World Bank. 
Blundell, R. & Powell, J. L. (2003). Endogeneity in nonparametric and semiparametric regression 

models. Econometric Society Monographs, 36, 312-357. 
Börjesson, M., Eliasson, J., Hugosson, M. B., & Brundell-Freij, K. (2012). The Stockholm congestion 

charges—5 years on. Effects, acceptability and lessons learnt. Transport Policy, 20, 1-12. 
Börjesson, M., Fung, C. M., & Proost, S. (2016). Should buses still be subsidized in Stockholm?  

Economics of Transportation, forthcoming. 
Brakman, S., Garretsen, H., & Van Marrewijk, C. (2009). The new introduction to geographical 

economics. Cambridge University Press. 
Brueckner, J. K., Thisse, J. F., & Zenou, Y. (1999). Why is central Paris rich and downtown Detroit poor?: 

An amenity-based theory. European Economic Review, 43(1), 91-107. 
Calfee, J. & Winston, C. (1998). The value of automobile travel time: implications for congestion policy. 

Journal of Public Economics, 69(1), 83-102. 
Calvert, S. C., Schakel, W. J., & van Lint, J. W. C. (2017). Will automated vehicles negatively impact traffic 

flow?. Journal of Advanced Transportation, 2017. 
Card, D. (1990). Strikes and wages: a test of an asymmetric information model. The Quarterly Journal 

of Economics, 105(3), 625-659. 
Carrillo, J. A., Ferreira, L. C., & Precioso, J. C. (2012). A mass-transportation approach to a one 

dimensional fluid mechanics model with nonlocal velocity. Advances in Mathematics, 231(1), 
306-327. 

Carson, J. L., Mannering, F. L., Legg, B., Nee, J. & Nam, D. (1999). Are incident management programs 
effective? Findings from Washington State. Transportation Research Record: Journal of the 
Transportation Research Board, 1683(1), 8-13. 

Cary, M. (1929). Notes on the legislation of Julius Caesar. Journal of Roman Studies, 19(02), 113-119. 
CBS (2014) Centraal Bureau for de Statistiek. Retrieved on 4th of November 2014 on 

http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=81127NED&D1=0-
1&D2=l&D3=a&D4=0,38-44&D5=0&D6=a&VW=T. 

Chakroborty, P., & Das, A. (2017). Principles of transportation engineering. PHI Learning Pvt. Ltd. 



 

135 
 

Chay, K.Y. & Greenstone, M. (2005). Does air quality matter? Evidence from the housing market. Journal 
of Political Economy 113, 376-424. 

Chen, Y., & Whalley, A. (2012). Green infrastructure: The effects of urban rail transit on air 
quality. American Economic Journal: Economic Policy, 58-97. 

Chu, X. (1995). Endogenous trip scheduling: the Henderson approach reformulated and compared with 
the Vickrey approach. Journal of Urban Economics, 37(3), 324-343. 

Ciccone, A., & Hall, R. E. (1996). Productivity and the density of economic activity. The American 
Economic Review, 86(1), 54. 

Citymetric (2017). To prevent autonomous vehicles clogging our cities, we need to talk about road-
pricing. http://www.citymetric.com/transport/prevent-autonomous-vehicles-clogging-our-
cities-we-need-talk-about-road-pricing-3050. 

Compton, J., & Pollak, R. A. (2014). Family proximity, childcare, and women’s labor force 
attachment. Journal of Urban Economics, 79, 72-90. 

Couture V., Duranton G. & M. Turner (2016). Speed. Review of Economics and Statistics, forthcoming. 
Crain J. L., & Flynn, S. D. (1975). Southern California rapid transit district 1974 strike impact study. 

California Department of Transportation, Division of Mass Transportation, Sacramento, CA.  
Czerny, A. I., & Zhang, A. (2014). Airport congestion pricing when airlines price discriminate. 

Transportation Research Part B: Methodological, 65, 77-89. 
Daganzo, C. F., Gayah, V. V., & Gonzales, E. J. (2011). Macroscopic relations of urban traffic variables: 

Bifurcations, multivaluedness and instability. Transportation Research Part B: Methodological, 
45(1), 278-288. 

Davis L. (2008). The effects of driving restrictions on air quality in Mexico City. Journal of Political 
Economy, 116. 

De Borger, B., & Proost, S. (2013). Traffic externalities in cities: the economics of speed bumps, low 
emission zones and city bypasses. Journal of Urban Economics, 76, 53-70. 

De Borger, B., & Proost, S. (Eds.). (2001). Reforming transport pricing in the European Union: A 
modelling approach. Edward Elgar Publishing. 

De Borger, B., Mulalic, I., & Rouwendal, J. (2016). Measuring the rebound effect with micro data: A first 
difference approach. Journal of Environmental Economics and Management, 79, 1-17. 

De Palma, A., Lindsey, R., & Proost, S. (2006). Research challenges in modelling urban road pricing: An 
overview. Transport Policy, 13(2), 97-105. 

De Vries, C. (2013). Verplaatsingen in Rotterdam, Stadsregio en Nederland, 2004 -2011. Centrum voor 
Onderzoek en Statistiek (COS). 

Dementieva, M. & Verhoef, E.T. (2016). Miles, speed, and technology: Traffic safety under oligopolistic 
insurance. Transportation Research. Part B: Methodological, 86, 147-162.  

Dewees, D. N. (1979). Estimating the time costs of highway congestion. Econometrica: Journal of the 
Econometric Society, 1499-1512. 

Dimitropoulos, A., van Ommeren, J. N., Koster, P., & Rietveld, P. (2016). Not fully charged: Welfare 
effects of tax incentives for employer-provided electric cars. Journal of Environmental 
Economics and Management, 78, 1-19. 

Downs, A. (1992). Stuck in traffic: Coping with peak-hour traffic congestion. Brookings Institution Press. 
Downs, A. (2004). Still Stuck in Traffic: Coping with Peak-Hour Traffic Congestion. Brookings Institution 

Press, Washington DC. 
Dunn, W. N. (2015). Public policy analysis. Routledge. 
Duranton, G. & Turner, M. A. (2016). Urban Form and Driving. Working paper, the Wharton School. 



 

136 
 

Duranton, G., & Turner, M. A. (2011). The fundamental law of road congestion: Evidence from US 
cities. The American Economic Review, 2616-2652. 

Duranton, G., & Turner, M. A. (2012). Urban growth and transportation. The Review of Economic 
Studies, 79(4), 1407-1440. 

Duranton, G., Morrow, P. M., & Turner, M. A. (2014). Roads and Trade: Evidence from the US. The 
Review of Economic Studies, 81(2), 681-724. 

  duration. Transportation Research Part A: Policy and Practice, 34(2), 85-102. 
Eliasson, J., & Mattsson, L. G. (2000). A model for integrated analysis of household location and travel 

choices. Transportation Research Part A: Policy and Practice, 34(5), 375-394. 
Eliasson, J., Hultkrantz, L., Nerhagen, L., & Rosqvist, L. S. (2009). The Stockholm congestion–charging 

trial 2006: Overview of effects. Transportation Research Part A: Policy and Practice, 43(3), 240-
250. 

Else, P. K. (1981). A reformulation of the theory of optimal congestion taxes. Journal of transport 
economics and policy, 217-232. 

Elvik, R. (2000). How much do road accidents cost the national economy?. Accident Analysis & 
Prevention, 32(6), 849-851. 

Emmerink, R. H., Nijkamp, P., Rietveld, P. & Van Ommeren, J. N. (1996). Variable message signs and 
radio traffic information: An integrated empirical analysis of drivers’ route choice behavior.  
Transportation Research Part A: Policy and Practice, 30(2), 135-153. 

European Commission (2011). Roadmap to a Single European Transport Area – Towards a competitive 
and resource efficient transport system. Communication on the Europe 2020 Flagship Initiative, 
& Innovation Union, C. O. M. 

Falcocchio, J. C. & Levinson, H. S. (2015). Historical perspective of urban traffic congestion. Springer. 
FHWA (1997). 1997 Federal highway cost allocation study final report. US Federal Highway 

Administration, Department of Transportation, Washington, D.C.  
Financial Times (2016). Traffic congestion: is London running out of road?. 

https://www.ft.com/content/40774fc6-76b5-11e6-bf48-b372cdb1043a 
Fosgerau M. and K. Small (2013). Hypercongestion in downtown metropolis. Journal of Urban 

Economics 76, 122-134. 
Fosgerau, M. (2015). Congestion in the bathtub. Economics of Transportation, 4(4), 241-255. 
Fosgerau, M., & De Palma, A. (2013). The dynamics of urban traffic congestion and the price of parking. 

Journal of Public Economics, 105, 106-115. 
Fosgerau, M., & Small, K. A. (2012). Marginal congestion cost on a dynamic expressway network. 

Journal of Transport Economics and Policy (JTEP), 46(3), 431-450. 
Fosgerau, M., & Small, K. A. (2013). Hypercongestion in downtown metropolis. Journal of Urban 

Economics, 76. 122-134. 
Fournier, R. L. (2017). Basic transport phenomena in biomedical engineering. CRC press. 
Fowkes, A. S., Milne, D., Nash, C. A., & May, A. D. (1993). The Distributional Impact of Various Road 

Charging Schemes for London. Institute for Transport Studies Working Paper 400. 
Franzosi, R. (1989). One hundred years of strike statistics: methodological and theoretical issues in 

quantitative strike research. Industrial and Labor Relations Review, 348-362. 
Garrison, D. & Mannering, F. (1990). Assessing the traffic impacts of freeway incidents and driver 

information. ITE Journal, 60(8), 19-23. 
Geroliminis, N. & Daganzo, C. F. (2008). Existence of urban-scale macroscopic fundamental diagrams: 

Some experimental findings. Transportation Research Part B: Methodological, 42(9), 759-770. 
Glaeser, E. L. (1998). Are cities dying? The Journal of Economic Perspectives, 12(2), 139-160. 



 

137 
 

Glaeser, E. L. (2008). Cities, agglomeration, and spatial equilibrium. Oxford University Press. 
Glaeser, E. L., & Kahn, M. E. (2010). The greenness of cities: carbon dioxide emissions and urban 

development. Journal of Urban Economics, 67(3), 404-418. 
Glaeser, E. L., & Kohlhase, J. E. (2004). Cities, regions and the decline of transport costs*. Papers in 

regional Science, 83(1), 197-228. 
Glaeser, E. L., Kahn, M. E., & Rappaport, J. (2008). Why do the poor live in cities? The role of public 

transportation. Journal of Urban Economics, 63(1), 1-24. 
Goh, M. (2002). Congestion management and electronic road pricing in Singapore. Journal of Transport 

Geography, 10(1), 29-38. 
Goodwin, P. (2004). The Economic Cost of Road Congestion. University College London. The Rail Freight 

Group, London. 
Graham, D. J. (2007). Agglomeration, productivity and transport investment. Journal of transport 

economics and policy (JTEP), 41(3), 317-343. 
Graham, D. J. (2007). Variable returns to agglomeration and the effect of road traffic congestion. 

Journal of Economics, 62(1): 103-20. 
Gubins, S., & Verhoef, E. T. (2014). Dynamic bottleneck congestion and residential land use in the 

monocentric city. Journal of Urban Economics, 80, 51-61. 
Guiliano, G. (1989). Incident characteristics, frequency, and duration on a high volume urban freeway. 

Transportation Research Part A: General, 23(5), 387-396. 
Haight, F. A. (1965). Mathematical theories of traffic flow. 
Hall, F. L. (1996). Traffic stream characteristics. Traffic Flow Theory. US Federal Highway Administration.

  
Hall, F. L., Allen, B. L., & Gunter, M. A. (1986). Empirical analysis of freeway flow-density relationships. 

Transportation Research Part A: General, 20(3), 197-210. 
Hall, R. W. (1993). Non-recurrent congestion: how big is the problem?: are traveler information systems 

the solution? Transportation Research C. (1): 89-103. 
Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243-1248. 
Hauer, E. (2010). Cause, effect and regression in road safety: a case study. Accident Analysis & 

Prevention, 42(4), 1128-1135. 
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 153-161. 
Helbing, D. (2001). Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 

73(4), 1067. 
Henderson, J.V. (1974). Road congestion: a reconsideration of pricing theory. Journal of Urban 

Economics 3, 346-365. 
Henderson, J.V. (1981). The economics of staggered work hours. Journal of Urban Economics 9, 349-

364. 
Herrera, J. C., & Bayen, A. M. (2007). Traffic flow reconstruction using mobile sensors and loop detector 

data. University of California Transportation Center. 
Holly, A. & Sargan, J. D. (1982). Testing for exogeneity within a limited information framework. 

Université de Lausanne, Ecole des hautes études commerciales. 
Hotelling, H. (1938). The general welfare in relation to problems of taxation and of railway and utility 

rates. Econometrica: Journal of the Econometric Society, 242-269. 
Hume, D. – A treatise of human nature, Section 2. Of the origin of justice and property; Philosophical 

Classics; Dover. 
Immers, B. & Landman, R. (2008). “SMART” Goals for the Application of Incident Management 

Measures to the Dutch Road Network. TNO. 



 

138 
 

Jacobs, J. (1961). Death and Life of Great American Cities. New York: Random House. 
Johnson, W. R. (2014). House prices and female labor force participation. Journal of Urban Economics, 

82, 1-11. 
Jones, B., Janssen, L. & Mannering, F. (1991). Analysis of the frequency and duration of freeway 

accidents in Seattle. Accident Analysis and Prevention, 23(4): 239-255. 
Kantor, Y., Rietveld, P., & van Ommeren, J. N. (2014). Towards a general theory of mixed zones: The 

role of congestion. Journal of Urban Economics, 83, 50-58. 
Karpilow, Q., & Winston, C. (2016). A New Route to Increasing Economic Growth: Reducing Highway 

Congestion with Autonomous Vehicles. unpublished paper.` 
Kaufmann, V. (2017). Re-thinking mobility: contemporary sociology. Routledge. 
Keeler, T. E., & Small, K. A. (1977). Optimal peak-load pricing, investment, and service levels on urban 

expressways. Journal of Political Economy, 85(1), 1-25. 
Kenworthy, J. R. & Laube, F. B. (2001). The Millennium Cities database for sustainable transport. 

Brussels: UITP. 
Knight, F. H. (1924). Some fallacies in the interpretation of social cost. The Quarterly Journal of 

Economics, 38(4), 582-606. 
Kobus, M., van Ommeren, J., Bruinsma, F., & Rietveld, P. (2011). May congestion induce current users 

to increase their peak demand for a local public good?.  
Koelbl, B. S., van den Broek, M. A., André, P., Faaij, C., & van Vuuren, D. P. (2014). Uncertainty in Carbon 

Capture and Storage (CCS) deployment projections: a cross-model comparison exercise. 
Climatic change, 123(3-4), 461. 

Kok, N., Monkkonen, P., & Quigley, J. M. (2014). Land use regulations and the value of land and housing: 
An intra-metropolitan analysis. Journal of Urban Economics, 81, 136-148. 

Koopmans, C., Groot, W., Warffemius, P., Annema, J. A., & Hoogendoorn-Lanser, S. (2013). Measuring 
generalised transport costs as an indicator of accessibility changes over time. Transport Policy, 
29, 154-159. 

Koster, H.R.A., Van Ommeren, J.N., Rietveld, P. (2016). Historic Amenities, Income and Sorting of 
Households. Journal of Economic Geography 16(1):203-236. 

Koster, P. & Rietveld, P. (2011). Optimizing incident management on the road. Journal of Transport 
Economics and Policy, 45(1): 63-81. 

Kouvelas, A., Saeedmanesh, M. & Geroliminis, N. (2017). Enhancing model-based feedback perimeter 
control with data-driven online adaptive optimization. Transportation Research B, 96, 26-45. 

Lam, T. C. & Small, K. A. (2001). The value of time and reliability: measurement from a value of pricing 
experiment. Transportation Research Part E, 34A, 85-102. 

Lawyer, D. S. (2007). Fuel-efficiency of travel in the 20th century. Retrieved on 29.11.2015 from 
http://www.lafn.org/~dave/trans/energy/fuel-eff-20th.html. 

Lee, D. (2000). Demand elasticities for highway travel. Highway Economic Requirements System, 4. 
Lee, J. T., & Fazio, J. (2005). Influential factors in freeway crash response and clearance times by 

emergency management services in peak periods. Traffic injury prevention, 6(4), 331-339. 
Leinemann, F. (2011). Roadmap to a single European transport area – towards a competitive and 

resource efficient transport system. White Paper COM (2011) 144 final, European Commission  
Lindsey, R. (2006). Do economists reach a conclusion?. Econ Journal Watch, 3(2), 292-379. 
Litman, T. (2004). Transit price elasticities and cross-elasticities. Journal of Public Transportation, 7(2), 

3. 
Litman, T. (2015). Transit price elasticities and cross-elasticities. www.nctr.usf.edu/jpt/pdf/JPT 7-2 

Litman.pdf). Retrieved: 23/09/2015. 

https://joeg.oxfordjournals.org/content/16/1/203
https://joeg.oxfordjournals.org/content/16/1/203


 

139 
 

Litman, T. (2017). Evaluating public transit benefits and costs. Victoria Transport Policy Institute. 
Lo, S., & Hall, R. W. (2006). Effects of the Los Angeles transit strike on highway congestion. Transport 

Research A, 40, 903-917. 
Maibach, M., Schreyer, C., Sutter, D., Van Essen, H. P., Boon, B. H., Smokers, R., ... & Bak, M. (2008). 

Handbook on estimation of external costs in the transport sector. CE Delft.  
Manville, M., & Cummins, B. (2015). Why do voters support public transportation? Public choices and 

private behavior. Transportation, 42(2), 303-332. 
Marchetti, C. (1994). Anthropological invariants in travel behavior. Technological forecasting and social 

change, 47(1), 75-88. 
Marrades, R. and Segovia, C. (2013). Re-using outdated infrastructure: the case of Guadalmedina 

riverbed. in D. Iossifova (Ed.) Architecture & Planning in Times of Scarcity. Reclaiming the 
Possibility of Making (pp: 126-135), Softgrid, AESOP & IFHP. 

Marsden, G., & Docherty, I. (2013). Insights on disruptions as opportunities for transport policy change. 
Transport Research Part A, 51, 46-55. 

May, A. D., & Milne, D. S. (2000). Effects of alternative road pricing systems on network performance. 
Transportation Research Part A: Policy and Practice, 34(6), 407-436. 

May, A. D., Shepherd, S. P., & Bates, J. J. (2000). Supply curves for urban road networks. Journal of 
Transport Economics and Policy, 261-290. 

Mayeres, I., & Proost, S. (2001). Should diesel cars in Europe be discouraged? Regional Science and 
Urban Economics, 31(4), 453-470. 

Mayeres, I., Ochelen, S., & Proost, S. (1996). The marginal external costs of urban transport. 
Transportation Research Part D: Transport and Environment, 1(2), 111-130. 

Mill, J. S. (1836). On the Definition of Political Economy, and on the Method of Investigation Proper to 
It. Essays on Some Unsettled Questions of Political Economy, 2, 38, 48. 

Milne, D. S., May, A. D., & Van Vliet, D. (1993). Modelling the Network Effects of Road User Charging: 
Results from a SATURN Study. 

Milne, D., Niskanen, E., & Verhoef, E. (2000). Operationalisation of Marginal Cost Pricing within Urban 
Transport (No. 63). Government Institute for Economic Research Finland (VATT). 

Mohring, H. (1972). Optimization and Scale Economies in Urban Bus Transportation. American 
Economic Review, 62, 591-604. 

Mulalic, I., Van Ommeren, J. N., & Pilegaard, N. (2014). Wages and Commuting: Quasi‐natural 
Experiments' Evidence from Firms that Relocate. The Economic Journal, 124(579), 1086-1105. 

Mumford, L. (1961). The city in history: Its origins, its transformations, and its prospects (Vol. 67). 
Houghton Mifflin Harcourt. 

Nam, D., & Mannering, F. (2000). An exploratory hazard-based analysis of highway incident 
Nelson, P., Baglino, A., Harrington, W., Safirova, E. & Lipman, A. (2007). Transit in Washington, DC: 

current benefits and optimal level of provision. Journal of Urban Economics, 62(2), 231-251. 
Newbery, D. M., & Santos, G. (2002). Estimating urban road congestion costs. London: Centre for 

Economic Policy Research. 
ONS (2014). Retrieved on 24th September 2014 from http://www.statistics.gov.uk/hub/labour-

market/people-in-work/labour-disputes/index.html. 
O'Regan, K. M., & Quigley, J. M. (1991). Labor market access and labor market outcomes for urban 

youth. Regional Science and Urban Economics, 21(2), 277-293. 
Otte, D., Jänsch, M., & Haasper, C. (2012). Injury protection and accident causation parameters for 

vulnerable road users based on German In-Depth Accident Study GIDAS. Accident Analysis & 
Prevention, 44(1), 149-153. 



 

140 
 

OVPRO (2014). RET maakt 11 miljoen euro winst in 2013. Vakblad vor stads en streekvervoer. Retrieved 
on 1st November 2014 from http://www.ovpro.nl/bus/2014/05/20/ret-maakt-11-miljoen-
euro-winst-in-2013. 

Parry, I. W., & Bento, A. (2001). Revenue recycling and the welfare effects of road pricing. The 
Scandinavian Journal of Economics, 103(4), 645-671. 

Parry, I. W., & Bento, A. (2002). Estimating the welfare effect of congestion taxes: The critical 
importance of other distortions within the transport system. Journal of Urban Economics, 
51(2), 339-365. 

Parry, I. W., & Small, K. A. (2009). Should urban transit subsidies be reduced? The American Economic 
Review, 99(3), 700-724. 

Payne, H. J. (1977). Discontinuity in equilibrium freeway traffic flow. Transportation Research Record. 
PbIVVS (1984). Effects of Traffic Transportation of a Strike at HTM [in Dutch], Main report, 

Projectbuerau Integrale Verkeers en Vervoerstudies. Ministrie van Verkeer and Waterstaat, The 
Hague. 

Peer, S. (2013). The Economics of Trip Scheduling Travel Time Variability and Traffic Information. Vrije 
Universiteit Amsterdam, Amsterdam. 

Peer, S., Knockaert, J., Koster, P., & Verhoef, E. T. (2014). Over-reporting vs. overreacting: Commuters’ 
perceptions of travel times. Transportation Research Part A: Policy and Practice, 69, 476-494. 

Peer, S., Knockaert, J., Koster, P., Tseng, Y. Y., & Verhoef, E. T. (2013). Door-to-door travel times in RP 
departure time choice models: An approximation method using GPS data. Transportation 
Research Part B: Methodological, 58, 134-150. 

Piano Generale del Traffico Urbano (2014). City of Rome, 2014. 
Pigou Arthur, C. (1920). The economics of welfare. London, McMillan. 
Plato.  Politeia. 
Proost, S. (2014). Pricing of public transit under union power. Presented at: International 

Transportation Economics Association Conference, 2014. 
Proost, S., & Van Dender, K. (2008). Optimal urban transport pricing in the presence of congestion, 

economies of density and costly public funds. Transportation Research Part A: Policy and 
Practice, 42(9): 1220-1230. 

Ranft, F., Adler, M. W., Diamond, P., Guerrero, E. & Laza, M. (2016) Freeing the road: Shaping the future 
for autonomous vehicles. Policy Network Publication. 

Rau, K. H. (1826). Grundsätze der Volkswirtschaftslehre. Heidelberg: C. F. 
Rauh, W. (2010). Congestion - a strong argument for public transport. Translated from: Staukosten – 

ein starkes Argument für den Öffentlichen Verkehr in Der Nahverkehr. 
Rietveld, P., & Daniel, V. (2004). Determinants of bicycle use: do municipal policies matter?. 

Transportation Research Part A: Policy and Practice, 38(7), 531-550. 
Santos, G., Button, K., & Noll, R. G. (2008). London Congestion Charging. Brookings-wharton Papers on 

Urban Affairs, 177–234. 
Savelberg, F. (Ed.). (2013). Mobiliteitsbalans 2013. Kennisinstituut voor Mobiliteitsbeleid. 
Schafer, A., & Victor, D. G. (2000). The future mobility of the world population. Transportation Research 

Part A: Policy and Practice, 34(3), 171-205. 
Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. The Annals of 

Statistics, 898-916. 
Small, K. (2004). Road pricing and public transit. Research in Transportation Economics, 9(1). 133-158. 
Small, K. A. & Verhoef, E. (2007). The economics of urban transport. Routledge. 



 

141 
 

Small, K. A., & Gomez-Ilbanez, J. A. (1998). Road Pricing for Congestion Management: The Transition 
from Theory to Policy. University of California Transportation Center. 

Small, K. A., & Verhoef, E. (2007). The economics of urban transport. Routledge. 
Small, K. A., Winston, C., & Yan, J. (2005). Uncovering the distribution of motorists' preferences for 

travel time and reliability. Econometrica, 73(4), 1367-1382. 
Smith, A. (1776). On the Division of Labour. The Wealth of Nations, Books I-III. 
Smith, B. L., Williams, B. M., & Oswald, R. K. (2002). Comparison of parametric and nonparametric 

models for traffic flow forecasting. Transportation Research Part C: Emerging Technologies, 
10(4), 303-321. 

Smolensky, M. H., Di Milia, L., Ohayon, M. M., & Philip, P. (2011). Sleep disorders, medical conditions, 
and road accident risk. Accident Analysis & Prevention, 43(2), 533-548. 

Snelder, M. & Drolenga, H. (2011). De Robuustheid van het Nederlandse Hoofdwegennet. TNO, Delft.  
Snelder, M. (2010). Designing robust road networks: a general design method applied to the 

Netherlands. TU Delft. 
Snelder, M., Bakri, T., & van Arem, B. (2013). Delays caused by incidents: A data-driven approach. 

Transportation Research Board 92nd Annual Meeting (No. 13-0758). 
Sonnenschein, J., & Mundaca, L. (2016). Decarbonization under green growth strategies? The case of 

South Korea. Journal of Cleaner Production, 123, 180-193. 
Stadsregio Rotterdam (2012). € 227 miljoen subsidie voor het OV. Retrieved on 24th of September 2014 

from http://stadsregio.nl/%E2%82%AC-227-miljoen-subsidie-voor-het-ov. 
Sullivan, E. C., & Mastako, K. A. (1997). Impact Assessment for the California Route 91 Variable-toll 

Express Lanes. Transportation Research Board. 
The Economist (2000). The price of age. Issue of 21 December 2000. 
The Economist, (2000). Bused up, the LA transport strike, The Economist, print edition, September 23rd 

2000. 
Thomas, T., Jaarsma, R., & Tutert, B. (2013). Exploring temporal fluctuations of daily bicycle travel 

demand on Dutch cycle paths: the influence of weather on bicycle travel. Transport, 40(1), 1-
22.  

Tikoudis, I., Verhoef, E. T., & van Ommeren, J. N. (2015). On revenue recycling and the welfare effects 
of second-best congestion pricing in a monocentric city. Journal of Urban Economics, 89, 32-
47. 

TomTom Traffic Index (2017). Mexico City retains crown of most traffic congested city in the world. 
http://corporate.tomtom.com/releasedetail.cfm?releaseid=1012517 

Transport for London (2007). London Congestion Charging: Impacts Monitoring. Fifth Annual Report. 
July (www.tfl.gov.uk/assets/downloads/fifth-annual-impacts-monitoring report-2007-07-
07.pdf 

Transport for London (2014) Transport for London. Retrieved on the 15th of December 2015 at 
https://tfl.gov.uk/cdn/static/cms/documents/travel-in-london-report-7.pdf. 

Transport for London (2014). Travel in London. Mayor of London. Retrieved on 29.11.2015 at: 
http://content.tfl.gov.uk/travel-in-london-report-7.pdf  

Transport for London. (2003) Impacts Monitoring. First Annual Report. Transport for London. 
www.tfl.gov.uk/roadusers/congestioncharging/6722.aspx#2 

Treinreiziger (2011). Staking RET al om 9 uur begonnen. (Retrieved on 18th of February 2014 from 
http://www.treinreiziger.nl/actueel/binnenland/staking_ret_al_om_9_uur_ begonnen-
14535) 



 

142 
 

Underwood, R.T. (1961). Speed, volume and density relationship. Quality and theory of traffic flow, Yale 
Bu. Highway traffic, 141-188 

Van den Berg, V., & Verhoef, E. T. (2011). Winning or losing from dynamic bottleneck congestion 
pricing?: The distributional effects of road pricing with heterogeneity in values of time and 
schedule delay. Journal of Public Economics, 95(7-8), 983-992. 

Van der Loop, J. T. A. (1997). Intermodality: Successes by integrating modes and cycling. Public 
transport planning and operations. Proceedings of seminar G held at the European transport 
forum, 416, Brunel University.  

Van Exel, N.J.A., & Rietveld, P. (2001). Public transport strikes and traveler behavior, Transport Policy, 
8, 237-243. 

Van Exel, N.J.A., & Rietveld, P. (2009). When strikes come to town, Transport Research Part A, 43, 526-
525. 

Van Goeverden, C. D., & Egeter, B. (1993). Gecombinieerd gebruik van fiets en openbaar vervoer: 
verwachte effecten op de vervoerwijzekeuze van optimale fietsbeschikbaarbeid in voor- en 
natransport. Technische Universiteit Delft, Faculteit der Civiele Techniek, Vakgroup Verkeer.  

Van Ommeren, J., de Groote, J., & Mingardo, G. (2014). Residential parking permits and parking 
supply. Regional Science and Urban Economics, 45, 33-44. 

Van Ommeren, J., Rietveld, P., Hop, J. Z., & Sabir, M. (2013). Killing kilos in car accidents: Are external 
costs of car weight internalised?. Economics of transportation, 2(2), 86-93. 

Van Ommeren, J., Wentink, D., & Dekkers, J. (2011). The real price of parking policy. Journal of Urban 
Economics, 70(1), 25-31. 

Van Tilburg, C. (2007). Traffic and congestion in the Roman Empire. Routledge. 
Van Wee, B., & Börjesson, M. (2015). How to make CBA more suitable for evaluating cycling policies. 

Transport Policy, 44, 117-124. 
Verhoef, E. T. (1999). Time, speeds, flows and densities in static models of road traffic congestion and 

congestion pricing. Regional Science and Urban Economics, 29(3), 341-369. 
Verhoef, E. T. (2001). An integrated dynamic model of road traffic congestion based on simple car-

following theory: exploring hypercongestion. Journal of Urban Economics, 49(3), 505-542. 
Verhoef, E. T. (2003). Inside the queue: hypercongestion and road pricing in a continuous time–

continuous place model of traffic congestion. Journal of Urban Economics, 54(3), 531-565. 
Verhoef, E. T., & Rouwendal, J. (2004). A behavioural model of traffic congestion: endogenizing speed 

choice, traffic safety and time losses. Journal of Urban Economics, 56(3), 408-434. 
Verhoef, E. T., Nijkamp, P., & Rietveld, P. (1997). The social feasibility of road pricing: a case study for 

the Randstad area. Journal of Transport Economics and Policy, 255-276. 
Verhoef, E., Nijkamp, P., & Rietveld, P. (1995). Second-best regulation of road transport externalities. 

Journal of transport economics and policy, 147-167. 
Vickrey, W. S. (1963). Pricing in urban and suburban transport. The American Economic Review, 53(2), 

452-465. 
Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic 

Review, 59(2), 251-260. 
Von Thünen, J. H. (1826). Der Isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonmie. 

Hamburg: Perthes. 
Vukovic, D., Adler, M. W. & Vonk, T. (2013). Neerslag en Verkeer. TNO. 
Walters, A. A. (1968). The economics of road user charges. B. Mundial (Ed.). Washington, DC: 

International Bank for Reconstruction and Development. 
Wardrop, J. G. (1952). Road paper. Some theoretical aspects of road traffic research. In ICE Proceedings: 

Engineering Divisions, 1(3), 325-362, Thomas Telford. 



 

143 
 

WHO (2017). Road traffic injuries. Fact Sheet. www.who.int/mediacentre/factsheets/fs358/en/. 
Winston, C., & Maheshri, V. (2007). On the social desirability of urban rail transit systems. Journal of 

Urban Economics, 62(2), 362-382. 
Wooldridge, J. (2002), Econometric analysis of cross section and panel data.  Cambridge, MIT press. 
Yatchew, A. (2003). Semiparametric regression for the applied econometrician. Cambridge University 

Press. 
Zhou, D., Xu, C., Wang, D. & Jin, S. (2015). Estimating capacity of bicycle path on urban roads in 

Hangzhou, China. In Proceedings of the 94th Annual Meeting of the Transportation Research 
Board. 

  



 

144 
 

Summary  

Road transport is important to the modern economy. An increase in trade and personal mobility has 

intensified road use in the last decades and thereby exacerbated congestion and the associated losses 

in travel time, public health and environment. This thesis contributes to the on-going discussion on how 

to measure road congestion and examines the cost and benefits of some of the main policy remedies. 

We propose a novel approach to estimate the marginal external congestion cost of motor 

vehicle travel and associated welfare losses, while allowing for hypercongestion, i.e. when the road 

supply curve is backward bending. We apply this approach to the city of Rome, using quasi-

experimental variation in public transit supply to address endogeneity issues. We find that the marginal 

external cost of travel is substantial. Although hypercongestion is rare in our data, it accounts for about 

30 percent of congestion-related welfare losses. We demonstrate that the marginal congestion-relief 

benefit of public transit supply is sizeable and approximately constant over the full range of public 

transit supply levels. These results suggest that substantial welfare gains can be obtained not only by 

introducing road pricing, but also by adopting quantity-based measures (e.g. adaptive traffic lights) to 

avoid hypercongestion. We also show that road congestion has a strong effect on travel time delays of 

bus travelers.  

One of the unanswered questions in the field of urban economics is to which extent subsidies 

to public transit are justified. We examine one of the main benefits of public transit, a reduction in car 

congestion externalities, the so-called congestion relief benefit, using quasi-natural experimental data 

on citywide public transit strikes for Rotterdam, a city with mild congestion levels. On weekdays, a 

strike induces travel times to increase only marginally on the highway ring road but substantially on 

inner city roads. During rush hour, the strike effect is much more pronounced. The congestion relief 

benefit of public transit is substantial, equivalent to about 80% of the public transit subsidy. We 

demonstrate that during weekends, travel time does not change noticeable due to strikes. Further, we 

show that public transit strikes induce similar increases in number of cyclists as number of car travelers 

suggesting that bicycling-promoting policies to reduce car congestion externalities might be attractive. 

We estimate the marginal external losses from vehicle traffic for inner city roads and a highway 

in Rotterdam based on the external effect of traffic density on travel time. We account for endogeneity 

issues from reverse causality and measurement error through a two-stage instrumental variable 

approach using bicycle use and hour-of-the-weekday as instruments. Our approach captures the 



 

145 
 

backward-bending function of the relationship between travel time and flow. We use this road supply 

cost curve for economic evaluation of marginal external cost. Larger travel demand during peak hours 

has much higher external cost due to hyper-congestion. With tolls between €0.40 and €0.50 per 

kilometer during these hours, hyper-congestion could be prevented. 

Non-recurrent congestion is frequently caused by accidents and other incidents. We estimate 

the causal effect of incident duration on drivers’ time losses through changes in non-recurrent road 

congestion on Dutch highways. We demonstrate that incident duration has a strong positive, but 

concave, effect on non-recurrent congestion. The duration elasticity of non-recurrent congestion is 

about 0.35 implying that a one minute duration reduction generates a €57 gain per incident. We also 

show that at locations with high levels of recurrent congestion, non-recurrent congestion levels are 

considerably higher. At very congested locations, the benefit of reducing the incident duration by one 

minute is about €1200 per incident. Public policies that prioritize duration reductions at congested 

locations are therefore more beneficial. 
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